A generalized topological measure theory
HTML articles powered by AMS MathViewer
- by R. B. Kirk and J. A. Crenshaw
- Trans. Amer. Math. Soc. 207 (1975), 189-217
- DOI: https://doi.org/10.1090/S0002-9947-1975-0369648-7
- PDF | Request permission
Abstract:
The theory of measures in a topological space, as developed by V. S. Varadarajan for the algebra ${C^b}$ of bounded continuous functions on a completely regular topological space, is extended to the context of an arbitrary uniformly closed algebra $A$ of bounded real-valued functions. Necessary and sufficient conditions are given for ${A^ \ast }$ to be represented in the natural way by a space of regular finitely-additive set functions. The concepts of additivity and tightness for these set functions are considered and some remarks about weak convergence are made.References
- A. D. Alexandroff, Additive set-functions in abstract spaces, Rec. Math. [Mat. Sbornik] N.S. 8 (50) (1940), 307β348 (English, with Russian summary). MR 0004078
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- R. M. Brooks, On Wallman compactifications, Fund. Math. 60 (1967), 157β173. MR 210069, DOI 10.4064/fm-60-2-157-173
- D. H. Fremlin, D. J. H. Garling, and R. G. Haydon, Bounded measures on topological spaces, Proc. London Math. Soc. (3) 25 (1972), 115β136. MR 344405, DOI 10.1112/plms/s3-25.1.115
- Orrin Frink, Compactifications and semi-normal spaces, Amer. J. Math. 86 (1964), 602β607. MR 166755, DOI 10.2307/2373025
- E. Granirer, On Baire measures on $D$-topological spaces, Fund. Math. 60 (1967), 1β22. MR 208355, DOI 10.4064/fm-60-1-1-22
- R. B. Kirk, Measures in topological spaces and $B$-compactness, Nederl. Akad. Wetensch. Proc. Ser. A 72=Indag. Math. 31 (1969), 172β183. MR 0246104, DOI 10.1016/1385-7258(69)90007-9
- R. B. Kirk, Locally compact, $B$-compact spaces, Nederl. Akad. Wetensch. Proc. Ser. A 72=Indag. Math. 31 (1969), 333β344. MR 0264609, DOI 10.1016/1385-7258(69)90034-1
- R. B. Kirk, Algebras of bounded real-valued functions. I, Nederl. Akad. Wetensch. Proc. Ser. A 75=Indag. Math. 34 (1972), 443β451. MR 0320725, DOI 10.1016/1385-7258(72)90041-8
- J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc. (3) 17 (1967), 139β156. MR 204602, DOI 10.1112/plms/s3-17.1.139
- W. Moran, The additivity of measures on completely regular spaces, J. London Math. Soc. 43 (1968), 633β639. MR 228645, DOI 10.1112/jlms/s1-43.1.633
- W. Moran, Measures on metacompact spaces, Proc. London Math. Soc. (3) 20 (1970), 507β524. MR 437706, DOI 10.1112/plms/s3-20.3.507 S. E. Mosiman, Strict topologies and the ordered vector space $C(X)$ (to appear).
- Olav NjΘ§stad, On Wallman-type compactifications, Math. Z. 91 (1966), 267β276. MR 188977, DOI 10.1007/BF01111226
- F. Dennis Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311β336. MR 295065, DOI 10.1090/S0002-9947-1972-0295065-1
- F. Dennis Sentilles, The strict topology on bounded sets, Pacific J. Math. 34 (1970), 529β540. MR 273404, DOI 10.2140/pjm.1970.34.529
- Dennis Sentilles and Robert F. Wheeler, Linear functionals and partitions of unity in $C_{b}(X)$, Duke Math. J. 41 (1974), 483β496. MR 358314
- E. F. Steiner, Wallman spaces and compactifications, Fund. Math. 61 (1967/68), 295β304. MR 222849, DOI 10.4064/fm-61-3-295-304
- Gaisi Takeuti and Wilson M. Zaring, Introduction to axiomatic set theory, Graduate Texts in Mathematics, Vol. 1, Springer-Verlag, New York-Berlin, 1971. MR 0349390, DOI 10.1007/978-1-4684-9915-5 R. F. Wheeler, Seminar notes (unpublished).
- V. S. Varadarajan, Measures on topological spaces, Mat. Sb. (N.S.) 55 (97) (1961), 35β100 (Russian). MR 0148838
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 207 (1975), 189-217
- MSC: Primary 28A32
- DOI: https://doi.org/10.1090/S0002-9947-1975-0369648-7
- MathSciNet review: 0369648