Approximate isometries on finite dimensional Banach spaces
HTML articles powered by AMS MathViewer
- by Richard D. Bourgin
- Trans. Amer. Math. Soc. 207 (1975), 309-328
- DOI: https://doi.org/10.1090/S0002-9947-1975-0370137-4
- PDF | Request permission
Abstract:
A map $T:{{\mathbf {E}}_1} \to {{\mathbf {E}}_2}$ (${{\mathbf {E}}_1},{{\mathbf {E}}_2}$ Banach spaces) is an $\epsilon$-isometry if $|\;||T(X) - T(Y)|| - ||X - Y||\;| \leqslant \epsilon$ whenever $X,Y \in {{\mathbf {E}}_1}$. The problem of uniformly approximating such maps by isometries was first raised by Hyers and Ulam in 1945 and subsequently studied for special infinite dimensional Banach spaces. This question is here broached for the class of finite dimensional Banach spaces. The only positive homogeneous candidate isometry $U$ approximating a given $\epsilon$-isometry $T$ is defined by the formal limit $U(X) = {\lim _{r \to \infty }}{r^{ - 1}}T(rX)$. It is shown that, whenever $T:{\mathbf {E}} \to {\mathbf {E}}$ is a surjective $\epsilon$-isometry and ${\mathbf {E}}$ is a finite dimensional Banach space for which the set of extreme points of the unit ball is totally disconnected, then this limit exists. When ${\mathbf {E}} = \ell _1^k( = k \text {- dimensional}\; {\ell _1})$ a uniform bound of uniform approximation is obtained for surjective $\epsilon$-isometries by isometries; this bound varies linearly in $\epsilon$ and with ${k^3}$.References
- S. Banach, Théorie des opérations linéaires, Monografie Mat., PWN, Warsaw, 1932; reprint, Chelsea, New York, 1955. MR 17, 175.
- D. G. Bourgin, Approximate isometries, Bull. Amer. Math. Soc. 52 (1946), 704–714. MR 17465, DOI 10.1090/S0002-9904-1946-08638-3
- D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385–397. MR 31194, DOI 10.1215/S0012-7094-49-01639-7
- D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223–237. MR 42613, DOI 10.1090/S0002-9904-1951-09511-7
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- D. H. Hyers and S. M. Ulam, On approximate isometries, Bull. Amer. Math. Soc. 51 (1945), 288–292. MR 13219, DOI 10.1090/S0002-9904-1945-08337-2
- D. H. Hyers and S. M. Ulam, Approximate isometries of the space of continuous functions, Ann. of Math. (2) 48 (1947), 285–289. MR 20717, DOI 10.2307/1969171
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London, 1960. MR 0120127
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 207 (1975), 309-328
- MSC: Primary 46B05
- DOI: https://doi.org/10.1090/S0002-9947-1975-0370137-4
- MathSciNet review: 0370137