Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in $C^{n}$ with smooth boundary
HTML articles powered by AMS MathViewer
- by Ian Graham
- Trans. Amer. Math. Soc. 207 (1975), 219-240
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372252-8
- PDF | Request permission
Abstract:
The Carathéodory and Kobayashi distance functions on a bounded domain $G$ in ${{\mathbf {C}}^n}$ have related infinitesimal forms. These are the Carathéodory and Kobayashi metrics. They are denoted by $F(z,\xi )$ (length of the tangent vector $\xi$ at the point $z$). They are defined in terms of holomorphic mappings, from $G$ to the unit disk for the Carathéodory metric, and from the unit disk to $G$ for the Kobayashi metric. We consider the boundary behavior of these metrics on strongly pseudoconvex domains in ${{\mathbf {C}}^n}$ with ${C^2}$ boundary. $\xi$ is fixed and $z$ is allowed to approach a boundary point ${z_0}$. The quantity $F(z,\xi )d(z,\partial G)$ is shown to have a finite limit. In addition, if $\xi$ belongs to the complex tangent space to the boundary at ${z_0}$, then this first limit is zero, and ${(F(z,\xi ))^2}d(z,\partial G)$ has a (nontangential) limit in which the Levi form appears. We prove an approximation theorem for bounded holomorphic functions which uses peak functions in a novel way. The proof was suggested by N. Kerzman. This theorem is used here in studying the boundary behavior of the Carathéodory metric.References
- S. Bergman, Über die Ke nfunktion und ihr Verhalten am Rande. I, II, J. Reine Angew. Math. 169 (1933), 1-42 ibid. 172 (1935), 89-128.
C. Carathéodory, Über das Schwarze Lemma bei analytischen Funktionen von zwei komplexen Veränderlichen, Math. Ann. 97 (1926), 76-98.
—, Über die Geometrie der analytischen Abbildungen, die durch analytische Funktionen von zwei Veränderlichen vermittelt werden, Abh. Math. Sem. Univ. Hamburg 6 (1928), 97-145.
- Klas Diederich, Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudo-konvexen Gebieten, Math. Ann. 187 (1970), 9–36 (German). MR 262543, DOI 10.1007/BF01368157 —, Über die 1. und 2. Ableitungen der Bergmanschen Kernfunktion und ihr Randverhalten Univ. of Münster, 1972 (unpublished notes).
- Charles Fefferman, On the Bergman kernel and biholomorphic mappings of pseudoconvex domains, Bull. Amer. Math. Soc. 80 (1974), 667–669. MR 338454, DOI 10.1090/S0002-9904-1974-13539-1 I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in ${{\mathbf {C}}^n}$ with smooth boundary, Thesis, Princeton University, Princeton, N. J., 1973.
- Ian Graham, Boundary behavior of the Carathéodory, Kobayashi, and Bergman metrics on strongly pseudoconvex domains in $\textbf {C}^{n}$ with smooth boundary, Bull. Amer. Math. Soc. 79 (1973), 749–751. MR 324076, DOI 10.1090/S0002-9904-1973-13297-5
- Hans Grauert and Ingo Lieb, Das Ramirezsche Integral und die Lösung der Gleichung $\bar \partial f=\alpha$ im Bereich der beschränkten Formen, Rice Univ. Stud. 56 (1970), no. 2, 29–50 (1971) (German). MR 273057
- Hans Grauert and Helmut Reckziegel, Hermitesche Metriken und normale Familien holomorpher Abbildungen, Math. Z. 89 (1965), 108–125 (German). MR 194617, DOI 10.1007/BF01111588
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- G. M. Henkin, Integral representation of functions which are holomorphic in strictly pseudoconvex regions, and some applications, Mat. Sb. (N.S.) 78 (120) (1969), 611–632 (Russian). MR 0249660
- G. M. Henkin, Integral representation of functions in strongly pseudoconvex regions, and applications to the $\overline \partial$-problem, Mat. Sb. (N.S.) 82 (124) (1970), 300–308 (Russian). MR 0265625 —, Analytic polyhedra are not analytically equivalent to strongly pseudoconvex domains, Dokl. Akad. Nauk SSSR (to appear) (Russian).
- Lars Hörmander, $L^{2}$ estimates and existence theorems for the $\bar \partial$ operator, Acta Math. 113 (1965), 89–152. MR 179443, DOI 10.1007/BF02391775 N. L. Kerzman, Taut manifolds and domains of holomorphy in ${{\mathbf {C}}^n}$, Notices Amer. Math. Soc. 16 (1969), 675-676.
- Norberto Kerzman, Hölder and $L^{p}$ estimates for solutions of $\bar \partial u=f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301–379. MR 281944, DOI 10.1002/cpa.3160240303
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, Ann. of Math. (2) 78 (1963), 112–148. MR 153030, DOI 10.2307/1970506
- Nils Øvrelid, Integral representation formulas and $L^{p}$-estimates for the $\bar \partial$-equation, Math. Scand. 29 (1971), 137–160. MR 324073, DOI 10.7146/math.scand.a-11041
- Hans-Jörg Reiffen, Die differentialgeometrischen Eigenschaften der invarianten Distanzfunktion von Carathéodory, Schr. Math. Inst. Univ. Münster 26 (1963), iii+66 (German). MR 158093
- H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971, pp. 125–137. MR 0304694
- E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Mathematical Notes, No. 11, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0473215
- Norbert Vormoor, Topologische Fortsetzung biholomorpher Funktionen auf dem Rande bei beschränkten streng-pseudokonvexen Gebieten im $\textbf {C}^{n}$ mit $C^{\infty }$-Rand, Math. Ann. 204 (1973), 239–261 (German). MR 367298, DOI 10.1007/BF01351592
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 207 (1975), 219-240
- MSC: Primary 32F99; Secondary 32F15, 32H15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372252-8
- MathSciNet review: 0372252