Finitary imbeddings of certain generalized sample spaces
HTML articles powered by AMS MathViewer
- by Marie A. Gaudard and Robert J. Weaver
- Trans. Amer. Math. Soc. 207 (1975), 293-307
- DOI: https://doi.org/10.1090/S0002-9947-1975-0373474-2
- PDF | Request permission
Abstract:
A generalized sample space each of whose subspaces has as its logic an orthomodular poset is called an HD sample space. In this paper it is shown that any HD sample space may be imbedded in a natural way in a generalized sample space which is HD and at the same time admits a full set of dispersion free weight functions.References
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- J. C. Dacey, Orthomodular spaces and additive measurement, Caribbean J. Sci. Math. 1 (1969), no. 2, 51–67. MR 376468
- D. J. Foulis and C. H. Randall, Operational statistics. I. Basic concepts, J. Mathematical Phys. 13 (1972), 1667–1675. MR 416417, DOI 10.1063/1.1665890 M. A. Gaudard, Maximal refinement ideals and atomicity in certain generalized sample spaces (in preparation).
- R. J. Greechie, Orthomodular lattices admitting no states, J. Combinatorial Theory Ser. A 10 (1971), 119–132. MR 274355, DOI 10.1016/0097-3165(71)90015-x
- A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin-New York, 1977 (German). Reprint of the 1933 original. MR 0494348 G. W. Mackey, The mathematical foundations of quantum mechanics: A lecturenote volume. Benjamin, New York, 1963. MR 27 #5501.
- C. H. Randall and D. J. Foulis, An approach to empirical logic, Amer. Math. Monthly 77 (1970), 363–374. MR 258688, DOI 10.2307/2316143
- D. J. Foulis and C. H. Randall, Lexicographic orthogonality, J. Combinatorial Theory Ser. A 11 (1971), 157–162. MR 280420, DOI 10.1016/0097-3165(71)90040-9
- C. H. Randall and D. J. Foulis, Operational statistics. II. Manuals of operations and their logics, J. Mathematical Phys. 14 (1973), 1472–1480. MR 416418, DOI 10.1063/1.1666208
- Robert J. Weaver, Admissible operations on sample spaces over the free orthogonality monoid, Colloq. Math. 25 (1972), 319–324. MR 326788, DOI 10.4064/cm-25-2-319-324
- Robert J. Weaver, Closed sets in the free orthogonality monoid, Amer. J. Math. 96 (1974), 593–601. MR 364043, DOI 10.2307/2373708
- Robert J. Weaver, Refinement conditions on operations in sample spaces, Canadian J. Math. 27 (1975), no. 5, 991–999. MR 395620, DOI 10.4153/CJM-1975-103-8
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 207 (1975), 293-307
- MSC: Primary 81.06
- DOI: https://doi.org/10.1090/S0002-9947-1975-0373474-2
- MathSciNet review: 0373474