The zeros of holomorphic functions in strictly pseudoconvex domains
HTML articles powered by AMS MathViewer
- by Lawrence Gruman
- Trans. Amer. Math. Soc. 207 (1975), 163-174
- DOI: https://doi.org/10.1090/S0002-9947-1975-0382725-X
- PDF | Request permission
Abstract:
We determine a sufficient condition on a positive divisor in certain strictly pseudoconvex domains in ${{\mathbf {C}}^n}$ such that there exists a function in the Nevanlinna class which determines the divisor.References
- Lawrence Gruman, Les classes de Hardy et de Nevanlinna généralisées, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A359–A361 (French). MR 328117 —, Generalized Hardy and Nevanlinna classes (to appear).
- G. M. Henkin, Integral representation of functions in strongly pseudoconvex regions, and applications to the $\overline \partial$-problem, Mat. Sb. (N.S.) 82 (124) (1970), 300–308 (Russian). MR 0265625
- G. M. Henkin, Continuation of bounded holomorphic functions from submanifolds in general position in a strictly pseudoconvex domain, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 540–567 (Russian). MR 0308444
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- Norberto Kerzman, Hölder and $L^{p}$ estimates for solutions of $\bar \partial u=f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301–379. MR 281944, DOI 10.1002/cpa.3160240303
- Guy Laville, Résolution du $\partial \bar \partial$ avec croissance dans des ouverts pseudoconvexes étoilés de $\textbf {C}^{n}$, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A554–A556 (French). MR 294692
- Pierre Lelong, Ensembles singuliers impropres des fonctions plurisousharmoniques, J. Math. Pures Appl. (9) 36 (1957), 263–303 (French). MR 92997
- Pierre Lelong, Fonctions entières ($n$ variables) et fonctions plurisousharmoniques d’ordre fini dans $C^{n}$, J. Analyse Math. 12 (1964), 365–407 (French). MR 166391, DOI 10.1007/BF02807441 —, Fonctionelles analytiques et fonctions entières ($n$ variables), Les Presses de l’Université de Montreal, 1968.
- P. Lelong, Fonctions plurisousharmoniques et formes différentielles positives, Gordon & Breach, Paris-London-New York; distributed by Dunod Éditeur, Paris, 1968 (French). MR 0243112 G. Mueller, Functions of finite order in the ball, Thesis, University of Notre Dame, 1971.
- Nils Øvrelid, Integral representation formulas and $L^{p}$-estimates for the $\bar \partial$-equation, Math. Scand. 29 (1971), 137–160. MR 324073, DOI 10.7146/math.scand.a-11041
- Enrique Ramírez de Arellano, Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis, Math. Ann. 184 (1969/70), 172–187 (German). MR 269874, DOI 10.1007/BF01351561
- Henri Skoda, Solution à croissance du second problème de Cousin dans $\textbf {C}^{n}$, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 1, 11–23 (French, with English summary). MR 291497, DOI 10.5802/aif.360
- E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Mathematical Notes, No. 11, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0473215
- Wilhelm Stoll, A Bezout estimate for complete intersections, Ann. of Math. (2) 96 (1972), 361–401. MR 313537, DOI 10.2307/1970793
- Edgar Lee Stout, $H^{p}$-functions on strictly pseudoconvex domains, Amer. J. Math. 98 (1976), no. 3, 821–852. MR 422685, DOI 10.2307/2373817
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 207 (1975), 163-174
- MSC: Primary 32F15; Secondary 32C25
- DOI: https://doi.org/10.1090/S0002-9947-1975-0382725-X
- MathSciNet review: 0382725