The generalized Martin’s minimum problem and its applications in several complex variables
HTML articles powered by AMS MathViewer
- by Shozo Matsuura
- Trans. Amer. Math. Soc. 208 (1975), 273-307
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372255-3
- PDF | Request permission
Abstract:
The objectives of this paper are to generalize the Martin’s ${\mathfrak {L}^2}$-minimum problem under more general additional conditions given by bounded linear functionals in a bounded domain $D$ in ${C^n}$ and to apply this problem to various directions. We firstly define the new $i$th biholomorphically invariant Kähler metric and the $i$th representative domain $(i = 0,1,2, \ldots )$, and secondly give estimates on curvatures with respect to the Bergman metric and investigate the asymptotic behaviors via an $A$-approach on the curvatures about a boundary point having a sort of pseudoconvexity. Further, we study (i) the extensions of some results recently obtained by K. Kikuchi on the Ricci scalar curvature, (ii) a minimum property on the reproducing subspace-kernel in $\mathfrak {L}_{(m)}^2(D)$, and (iii) an extension of the fundamental theorem of K. H. Look.References
- S. Bergman, Über die kernfunktion eines Bereiches und ihr Verhalten am Rande, J. Reine Angew. Math. 169 (1933), 1-42; ibid. 172 (1934), 89-128.
—, Sur la fonction-noyau d’un domaine et ses application dans la théorie des transformations pseudoconformes, Mém. Sci. Math., no. 108, Gauthier-Villars, Paris, 1948. MR 11, 344.
- Stefan Bergman, The kernel function and conformal mapping, Second, revised edition, Mathematical Surveys, No. V, American Mathematical Society, Providence, R.I., 1970. MR 0507701
- Bruce L. Chalmers, On boundary behavior of the Bergman kernel function and related domain functionals, Pacific J. Math. 29 (1969), 243–250. MR 247133, DOI 10.2140/pjm.1969.29.243
- Bruce L. Chalmers, Subspace kernels and minimum problems in Hilbert spaces with kernel function, Pacific J. Math. 31 (1969), 619–628. MR 344864, DOI 10.2140/pjm.1969.31.619 B. A. Fuks, Über geodasische Mannigfaltigkeiten einer invarianten Geometrie, Mat. Sb. 2 (44) (1937), 567-594.
- B. A. Fuks, Spetsial′nye glavy teorii analiticheskikh funktsiĭ mnogikh kompleksnykh peremennykh, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963 (Russian). MR 0174786
- B. A. Fuks, The Ricci curvature of the Bergman metric invariant with respect to biholomorphic mappings, Dokl. Akad. Nauk SSSR 167 (1966), 996–999 (Russian). MR 0196768
- Lars Hörmander, $L^{2}$ estimates and existence theorems for the $\bar \partial$ operator, Acta Math. 113 (1965), 89–152. MR 179443, DOI 10.1007/BF02391775 L. K. Hua, On the estimation of the unitary curvature of the space of several complex variables, Sci. Sinica 4 (1955), 1-26.
- Sadao Kató, Canonical domains in several complex variables, Pacific J. Math. 21 (1967), 279–291. MR 214810, DOI 10.2140/pjm.1967.21.279
- Keiz\B{o} Kikuchi, Canonical domains and their geometry in $C^{n}$, Pacific J. Math. 38 (1971), 681–696. MR 304704, DOI 10.2140/pjm.1971.38.681
- Shoshichi Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267–290. MR 112162, DOI 10.1090/S0002-9947-1959-0112162-5
- K. H. Look, Schwarz lemma and analytic invariants, Sci. Sinica 7 (1958), 453–504. MR 106294
- W. T. Martin, On a minimum problem in the theory of analytic functions of several variables, Trans. Amer. Math. Soc. 48 (1940), 351–357. MR 2619, DOI 10.1090/S0002-9947-1940-0002619-5 S. Matsuura, On the normal domains and the geodesics in the bounded symmetric spaces and the projective space, Sci. Rep. Gunma Univ. 15 (1966), 1-21.
- Shozo Matsuura, Bergman kernel functions and the three types of canonical domains, Pacific J. Math. 33 (1970), 363–384. MR 274800, DOI 10.2140/pjm.1970.33.363
- Harold S. Shapiro, Reproducing kernels and Beurling’s theorem, Trans. Amer. Math. Soc. 110 (1964), 448–458. MR 159006, DOI 10.1090/S0002-9947-1964-0159006-5
- J. M. Stark, Minimum problems in the theory of pseudo-conformal transformations and their application to estimation of the curvature of the invariant metric, Pacific J. Math. 10 (1960), 1021–1038. MR 121499, DOI 10.2140/pjm.1960.10.1021
- Teruo Tsuboi and Syozo Matsuura, Some canonical domains in $C^{n}$ and moment of inertia theorems, Duke Math. J. 36 (1969), 517–536. MR 255849
- Wilhelm Wirtinger, Über eine Minimalaufgabe im Gebiete der analytischen Funktionen von mehreren Veränderlichen, Monatsh. Math. Phys. 47 (1939), 426–431 (German). MR 56, DOI 10.1007/BF01695512
- K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., 1953. MR 0062505
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 208 (1975), 273-307
- MSC: Primary 32H05
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372255-3
- MathSciNet review: 0372255