Similarity of quadratic forms and isomorphism of their function fields
HTML articles powered by AMS MathViewer
- by Adrian R. Wadsworth
- Trans. Amer. Math. Soc. 208 (1975), 352-358
- DOI: https://doi.org/10.1090/S0002-9947-1975-0376527-8
- PDF | Request permission
Abstract:
This paper considers the question: Given anisotropic quadratic forms $Q$ and $Q’$ over a field $K$ (char $K \ne 2$), if their function fields are isomorphic must $Q$ and $Q’$ be similar? It is proved that the answer is yes if $Q$ is a Pfister form or the pure part of a Pfister form, or a $4$-dimensional form. The argument for Pfister forms and their pure parts does not generalize because these are the only anisotropic forms which attain maximal Witt index over their function fields. To handle the $4$-dimensional case the following theorem is proved: If $Q$ and $Q’$ are two $4$-dimensional forms over $K$ with the same determinant $d$, then $Q$ and $Q’$ are similar over $K$ iff they are similar over $K[\sqrt d ]$. The example of Pfister neighbors suggests that quadratic forms arguments are unlikely to settle the original question for other kinds of forms.References
- Manfred Knebusch, Specialization of quadratic and symmetric bilinear forms, and a norm theorem, Acta Arith. 24 (1973), 279–299. MR 349582, DOI 10.4064/aa-24-3-279-299
- T. Y. Lam, The algebraic theory of quadratic forms, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1973. MR 0396410
- Falko Lorenz, Quadratische Formen über Körpern, Lecture Notes in Mathematics, Vol. 130, Springer-Verlag, Berlin-New York, 1970 (German). MR 0282955, DOI 10.1007/BFb0069629 O. T. O’Meara, Introduction to quadratic forms, Die Grundlehren der Math. Wissenschaften, Band 117, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 27 #2485.
- Takashi Ono, Arithmetic of orthogonal groups, J. Math. Soc. Japan 7 (1955), 79–91. MR 69823, DOI 10.2969/jmsj/00710079
- Albrecht Pfister, Multiplikative quadratische Formen, Arch. Math. (Basel) 16 (1965), 363–370 (German). MR 184937, DOI 10.1007/BF01220043
- Ernst Witt, Über ein Gegenbeispiel zum Normensatz, Math. Z. 39 (1935), no. 1, 462–467 (German). MR 1545510, DOI 10.1007/BF01201366
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 208 (1975), 352-358
- MSC: Primary 10C05; Secondary 15A63
- DOI: https://doi.org/10.1090/S0002-9947-1975-0376527-8
- MathSciNet review: 0376527