On the Harish-Chandra homomorphism
HTML articles powered by AMS MathViewer
- by J. Lepowsky
- Trans. Amer. Math. Soc. 208 (1975), 193-218
- DOI: https://doi.org/10.1090/S0002-9947-1975-0376792-7
- PDF | Request permission
Abstract:
Using the Iwasawa decomposition $\mathfrak {g} = \mathfrak {k} \oplus \mathfrak {a} \oplus \mathfrak {n}$ of a real semisimple Lie algebra $\mathfrak {g}$, Harish-Chandra has defined a now-classical homomorphism from the centralizer of $\mathfrak {k}$ in the universal enveloping algebra of $\mathfrak {g}$ into the enveloping algebra $\mathcal {A}$ of $\mathfrak {a}$. He proved, using analysis, that its image is the space of Weyl group invariants in $\mathcal {A}$. Here the weaker fact that the image is contained in this space of invariants is proved “purely algebraically". In fact, this proof is carried out in the general setting of semisimple symmetric Lie algebras over arbitrary fields of characteristic zero, so that Harish-Chandra’s result is generalized. Related results are also obtained.References
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- Harish-Chandra, Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26–65. MR 58604, DOI 10.1090/S0002-9947-1954-0058604-0
- Sigurđur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154 (1970). MR 263988, DOI 10.1016/0001-8708(70)90037-X
- Bertram Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627–642. MR 245725, DOI 10.1090/S0002-9904-1969-12235-4
- J. Lepowsky, Algebraic results on representations of semisimple Lie groups, Trans. Amer. Math. Soc. 176 (1973), 1–44. MR 346093, DOI 10.1090/S0002-9947-1973-0346093-X C. Rader, Spherical functions on semisimple Lie groups, Thesis and unpublished supplements, University of Washington, 1971. Séminaire Sophus Lie École Norm. Sup. 1954/55, Théorie des algèbres de Lie. Topologies des groupes de Lie, Secretariat mathématique, Paris, 1955. MR 17, 384.
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 208 (1975), 193-218
- MSC: Primary 17B35; Secondary 22E45
- DOI: https://doi.org/10.1090/S0002-9947-1975-0376792-7
- MathSciNet review: 0376792