## A generalisation of supersoluble groups

HTML articles powered by AMS MathViewer

- by R. J. Haggarty PDF
- Trans. Amer. Math. Soc.
**209**(1975), 433-441 Request permission

## Abstract:

A $p$-soluble group $G$ belongs to the class $F(n,p)$ whenever the ranks of the $p$-chief factors of $G$ divide $n$ and $G$ has order coprime to $n$. A group in $F(n,p)$ is characterised by the embedding of its maximal subgroups. Whenever ${N_1}$ and ${N_2}$ are normal subgroups of $G$, of coprime indices in $G$, which lie in $F(n,p)$, then $G$ lies in $F(n,p)$ also. $F(n)$ denotes the intersection, taken over all primes $p$, of the classes $F(n,p)$. Simple groups all of whose proper subgroups lie in $F(n)$ are determined. Given an integer $n > 2$, there exist an integer $m$ with the same prime divisors as $n$ and a soluble group $G$ such that $G$ lies in $F(m)$ but $G$ does not possess a Sylow tower. (We may take $m = n$ provided that $n$ is not a multiple of 1806.) Furthermore, when $n$ is odd, an example of a soluble group $G$, all of whose proper subgroups lie in $F(n)$ but $G$ has no Sylow tower, is given.## References

- Klaus Doerk,
*Minimal nicht überauflösbare, endliche Gruppen*, Math. Z.**91**(1966), 198–205 (German). MR**191962**, DOI 10.1007/BF01312426 - D. K. Friesen,
*Products of normal supersolvable subgroups*, Proc. Amer. Math. Soc.**30**(1971), 46–48. MR**280590**, DOI 10.1090/S0002-9939-1971-0280590-4 - Trevor Hawkes,
*On the class of Sylow tower groups*, Math. Z.**105**(1968), 393–398. MR**228582**, DOI 10.1007/BF01110301 - B. Huppert,
*Endliche Gruppen. I*, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR**0224703**, DOI 10.1007/978-3-642-64981-3 - Bertram Huppert,
*Normalteiler und maximale Untergruppen endlicher Gruppen*, Math. Z.**60**(1954), 409–434 (German). MR**64771**, DOI 10.1007/BF01187387 - Joseph Kohler,
*Finite groups with all maximal subgroups of prime or prime square index*, Canadian J. Math.**16**(1964), 435–442. MR**166256**, DOI 10.4153/CJM-1964-046-6 - Michio Suzuki,
*On a class of doubly transitive groups*, Ann. of Math. (2)**75**(1962), 105–145. MR**136646**, DOI 10.2307/1970423

## Additional Information

- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**209**(1975), 433-441 - MSC: Primary 20D10
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372023-2
- MathSciNet review: 0372023