A generalisation of supersoluble groups
HTML articles powered by AMS MathViewer
- by R. J. Haggarty
- Trans. Amer. Math. Soc. 209 (1975), 433-441
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372023-2
- PDF | Request permission
Abstract:
A $p$-soluble group $G$ belongs to the class $F(n,p)$ whenever the ranks of the $p$-chief factors of $G$ divide $n$ and $G$ has order coprime to $n$. A group in $F(n,p)$ is characterised by the embedding of its maximal subgroups. Whenever ${N_1}$ and ${N_2}$ are normal subgroups of $G$, of coprime indices in $G$, which lie in $F(n,p)$, then $G$ lies in $F(n,p)$ also. $F(n)$ denotes the intersection, taken over all primes $p$, of the classes $F(n,p)$. Simple groups all of whose proper subgroups lie in $F(n)$ are determined. Given an integer $n > 2$, there exist an integer $m$ with the same prime divisors as $n$ and a soluble group $G$ such that $G$ lies in $F(m)$ but $G$ does not possess a Sylow tower. (We may take $m = n$ provided that $n$ is not a multiple of 1806.) Furthermore, when $n$ is odd, an example of a soluble group $G$, all of whose proper subgroups lie in $F(n)$ but $G$ has no Sylow tower, is given.References
- Klaus Doerk, Minimal nicht überauflösbare, endliche Gruppen, Math. Z. 91 (1966), 198–205 (German). MR 191962, DOI 10.1007/BF01312426
- D. K. Friesen, Products of normal supersolvable subgroups, Proc. Amer. Math. Soc. 30 (1971), 46–48. MR 280590, DOI 10.1090/S0002-9939-1971-0280590-4
- Trevor Hawkes, On the class of Sylow tower groups, Math. Z. 105 (1968), 393–398. MR 228582, DOI 10.1007/BF01110301
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703, DOI 10.1007/978-3-642-64981-3
- Bertram Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z. 60 (1954), 409–434 (German). MR 64771, DOI 10.1007/BF01187387
- Joseph Kohler, Finite groups with all maximal subgroups of prime or prime square index, Canadian J. Math. 16 (1964), 435–442. MR 166256, DOI 10.4153/CJM-1964-046-6
- Michio Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), 105–145. MR 136646, DOI 10.2307/1970423
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 209 (1975), 433-441
- MSC: Primary 20D10
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372023-2
- MathSciNet review: 0372023