Isotropic immersions and Veronese manifolds
HTML articles powered by AMS MathViewer
- by T. Itoh and K. Ogiue
- Trans. Amer. Math. Soc. 209 (1975), 109-117
- DOI: https://doi.org/10.1090/S0002-9947-1975-0375172-8
- PDF | Request permission
Abstract:
An $n$-dimensional Veronese manifold is defined as a minimal immersion of an $n$-sphere of curvature $n/2(n + 1)$ into an $\{ n(n + 3)/2 - 1\}$-dimensional unit sphere. The purpose of this paper is to give some characterizations of a Veronese manifold in terms of isotropic immersions.References
- S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp. 59–75. MR 0273546
- Manfredo P. do Carmo and Nolan R. Wallach, Minimal immersions of spheres into spheres, Ann. of Math. (2) 93 (1971), 43–62. MR 278318, DOI 10.2307/1970752
- Joseph Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geometry 5 (1971), 333–340. MR 288701
- Takehiro Itoh and Koichi Ogiue, Isotropic immersions, J. Differential Geometry 8 (1973), 305–316. MR 380682
- Barrett O’Neill, Isotropic and Kähler immersions, Canadian J. Math. 17 (1965), 907–915. MR 184181, DOI 10.4153/CJM-1965-086-7
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 209 (1975), 109-117
- MSC: Primary 53C40
- DOI: https://doi.org/10.1090/S0002-9947-1975-0375172-8
- MathSciNet review: 0375172