On the representation of lattices by modules
HTML articles powered by AMS MathViewer
- by George Hutchinson
- Trans. Amer. Math. Soc. 209 (1975), 311-351
- DOI: https://doi.org/10.1090/S0002-9947-1975-0376462-5
- PDF | Request permission
Abstract:
For a commutative ring $R$ with unit, a lattice $L$ is “representable by $R$-modules” if $L$ is embeddable in the lattice of submodules of some unitary left $R$-module. A procedure is given for generating an infinite first-order axiomatization of the class of all lattices representable by $R$-modules. Each axiom is a universal Horn formula for lattices. The procedure for generating the axioms is closely related to the ring structure, and is “effective” in the sense that many nontrivial axioms can be obtained by moderate amounts of computation.References
- E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957. MR 0082463
- Reinhold Baer, Linear algebra and projective geometry, Academic Press, Inc., New York, N.Y., 1952. MR 0052795
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- William Craig, On axiomatizability within a system, J. Symbolic Logic 18 (1953), 30–32. MR 55278, DOI 10.2307/2266324
- Peter Freyd, Abelian categories. An introduction to the theory of functors, Harper’s Series in Modern Mathematics, Harper & Row, Publishers, New York, 1964. MR 0166240 C. Herrmann and W. Poguntke, Axiomatic classes of lattices of normal subgroups, Technische Hochschule Darmstadt Preprint, no. 12, Darmstadt, West Germany, 1972.
- George Hutchinson, Modular lattices and abelian categories, J. Algebra 19 (1971), 156–184. MR 279154, DOI 10.1016/0021-8693(71)90103-7
- George Hutchinson, The representation of lattices by modules, Bull. Amer. Math. Soc. 79 (1973), 172–176. MR 313138, DOI 10.1090/S0002-9904-1973-13142-8
- George Hutchinson, On classes of lattices representable by modules, Proceedings of the University of Houston Lattice Theory Conference (Houston, Tex., 1973) Dept. Math., Univ. Houston, Houston, Tex., 1973, pp. 69–94. MR 0392714
- Bjarni Jónsson, On the representation of lattices, Math. Scand. 1 (1953), 193–206. MR 58567, DOI 10.7146/math.scand.a-10377
- Bjarni Jónsson, Modular lattices and Desargues’ theorem, Math. Scand. 2 (1954), 295–314. MR 67859, DOI 10.7146/math.scand.a-10416
- Bjarni Jónsson, Representation of modular lattices and of relation algebras, Trans. Amer. Math. Soc. 92 (1959), 449–464. MR 108459, DOI 10.1090/S0002-9947-1959-0108459-5
- S. R. Kogalovskiĭ, Structural characteristics of universal classes, Sibirsk. Mat. Ž. 4 (1963), 97–119 (Russian). MR 0147393 J. Łos, Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres, Mathematical Interpretation of Formal Systems, North-Holland, Amsterdam, 1955, pp. 98-113. MR 17, 700.
- Saul Lubkin, Imbedding of abelian categories, Trans. Amer. Math. Soc. 97 (1960), 410–417. MR 169890, DOI 10.1090/S0002-9947-1960-0169890-3
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872 M. Makkai and G. McNulty, Universal Horn axiom systems for lattices of submodules (submitted).
- Boris M. Schein, Relation algebras and function semigroups, Semigroup Forum 1 (1970), no. 1, 1–62. MR 285638, DOI 10.1007/BF02573019
- Ahmad Shafaat, On implicationally defined classes of algebras, J. London Math. Soc. 44 (1969), 137–140. MR 237409, DOI 10.1112/jlms/s1-44.1.137
- John von Neumann, Continuous geometry, Princeton Mathematical Series, No. 25, Princeton University Press, Princeton, N.J., 1960. Foreword by Israel Halperin. MR 0120174
- Rudolf Wille, Primitive Länge und primitive Weite bei modularen Verbänden, Math. Z. 108 (1969), 129–136 (German). MR 241332, DOI 10.1007/BF01114466
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 209 (1975), 311-351
- MSC: Primary 06A20
- DOI: https://doi.org/10.1090/S0002-9947-1975-0376462-5
- MathSciNet review: 0376462