Global dimension of differential operator rings. II
HTML articles powered by AMS MathViewer
- by K. R. Goodearl
- Trans. Amer. Math. Soc. 209 (1975), 65-85
- DOI: https://doi.org/10.1090/S0002-9947-1975-0382359-7
- PDF | Request permission
Abstract:
The aim of this paper is to find the global homological dimension of the ring of linear differential operators $R[{\theta _1}, \ldots ,{\theta _u}]$ over a differential ring $R$ with $u$ commuting derivations. When $R$ is a commutative noetherian ring with finite global dimension, the main theorem of this paper (Theorem 21) shows that the global dimension of $R[{\theta _1}, \ldots ,{\theta _u}]$ is the maximum of $k$ and $q + u$, where $q$ is the supremum of the ranks of all maximal ideals $M$ of $R$ for which $R/M$ has positive characteristic, and $k$ is the supremum of the sums $rank(P) + diff\;dim(P)$ for all prime ideals $P$ of $R$ such that $R/P$ has characteristic zero. [The value $diff\;dim(P)$ is an invariant measuring the differentiability of $P$ in a manner defined in §3.] In case we are considering only a single derivation on $R$, this theorem leads to the result that the global dimension of $R[\theta ]$ is the supremum of gl $dim(R)$ together with one plus the projective dimensions of the modules $R/J$, where $J$ is any primary differential ideal of $R$. One application of these results derives the global dimension of the Weyl algebra in any degree over any commutative noetherian ring with finite global dimension.References
- S. M. Bhatwadekar, On the global dimension of Ore-extensions, Nagoya Math. J. 50 (1973), 217–225. MR 319974, DOI 10.1017/S0027763000015658
- Jan-Erik Björk, The global homological dimension of some algebras of differential operators, Invent. Math. 17 (1972), 67–78. MR 320078, DOI 10.1007/BF01390024
- Stephen U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457–473. MR 120260, DOI 10.1090/S0002-9947-1960-0120260-3
- John Cozzens and Joseph Johnson, Some applications of differential algebra to ring theory, Proc. Amer. Math. Soc. 31 (1972), 354–356. MR 289472, DOI 10.1090/S0002-9939-1972-0289472-6
- K. R. Goodearl, Global dimension of differential operator rings, Proc. Amer. Math. Soc. 45 (1974), 315–322. MR 382358, DOI 10.1090/S0002-9939-1974-0382358-X
- N. S. Gopalakrishnan and R. Sridharan, Homological dimension of Ore-extensions, Pacific J. Math. 19 (1966), 67–75. MR 200324, DOI 10.2140/pjm.1966.19.67
- Robert Gordon and J. C. Robson, Krull dimension, Memoirs of the American Mathematical Society, No. 133, American Mathematical Society, Providence, R.I., 1973. MR 0352177
- I. N. Herstein, Noncommutative rings, The Carus Mathematical Monographs, No. 15, Mathematical Association of America; distributed by John Wiley & Sons, Inc., New York, 1968. MR 0227205
- Irving Kaplansky, Fields and rings, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0269449
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- George S. Rinehart, Note on the global dimension of a certain ring, Proc. Amer. Math. Soc. 13 (1962), 341–346. MR 137747, DOI 10.1090/S0002-9939-1962-0137747-7
- George S. Rinehart and Alex Rosenberg, The global dimensions of Ore extensions and Weyl algebras, Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), Academic Press, New York, 1976, pp. 169–180. MR 0409563
- Jan-Erik Roos, Détermination de la dimension homologique globale des algèbres de Weyl, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A23–A26 (French). MR 292914
- Francis L. Sandomierski, Semisimple maximal quotient rings, Trans. Amer. Math. Soc. 128 (1967), 112–120. MR 214624, DOI 10.1090/S0002-9947-1967-0214624-3
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 209 (1975), 65-85
- MSC: Primary 16A72
- DOI: https://doi.org/10.1090/S0002-9947-1975-0382359-7
- MathSciNet review: 0382359