## Global dimension of differential operator rings. II

HTML articles powered by AMS MathViewer

- by K. R. Goodearl
- Trans. Amer. Math. Soc.
**209**(1975), 65-85 - DOI: https://doi.org/10.1090/S0002-9947-1975-0382359-7
- PDF | Request permission

## Abstract:

The aim of this paper is to find the global homological dimension of the ring of linear differential operators $R[{\theta _1}, \ldots ,{\theta _u}]$ over a differential ring $R$ with $u$ commuting derivations. When $R$ is a commutative noetherian ring with finite global dimension, the main theorem of this paper (Theorem 21) shows that the global dimension of $R[{\theta _1}, \ldots ,{\theta _u}]$ is the maximum of $k$ and $q + u$, where $q$ is the supremum of the ranks of all maximal ideals $M$ of $R$ for which $R/M$ has positive characteristic, and $k$ is the supremum of the sums $rank(P) + diff\;dim(P)$ for all prime ideals $P$ of $R$ such that $R/P$ has characteristic zero. [The value $diff\;dim(P)$ is an invariant measuring the differentiability of $P$ in a manner defined in §3.] In case we are considering only a single derivation on $R$, this theorem leads to the result that the global dimension of $R[\theta ]$ is the supremum of gl $dim(R)$ together with one plus the projective dimensions of the modules $R/J$, where $J$ is any primary differential ideal of $R$. One application of these results derives the global dimension of the Weyl algebra in any degree over any commutative noetherian ring with finite global dimension.## References

- S. M. Bhatwadekar,
*On the global dimension of Ore-extensions*, Nagoya Math. J.**50**(1973), 217–225. MR**319974**, DOI 10.1017/S0027763000015658 - Jan-Erik Björk,
*The global homological dimension of some algebras of differential operators*, Invent. Math.**17**(1972), 67–78. MR**320078**, DOI 10.1007/BF01390024 - Stephen U. Chase,
*Direct products of modules*, Trans. Amer. Math. Soc.**97**(1960), 457–473. MR**120260**, DOI 10.1090/S0002-9947-1960-0120260-3 - John Cozzens and Joseph Johnson,
*Some applications of differential algebra to ring theory*, Proc. Amer. Math. Soc.**31**(1972), 354–356. MR**289472**, DOI 10.1090/S0002-9939-1972-0289472-6 - K. R. Goodearl,
*Global dimension of differential operator rings*, Proc. Amer. Math. Soc.**45**(1974), 315–322. MR**382358**, DOI 10.1090/S0002-9939-1974-0382358-X - N. S. Gopalakrishnan and R. Sridharan,
*Homological dimension of Ore-extensions*, Pacific J. Math.**19**(1966), 67–75. MR**200324**, DOI 10.2140/pjm.1966.19.67 - Robert Gordon and J. C. Robson,
*Krull dimension*, Memoirs of the American Mathematical Society, No. 133, American Mathematical Society, Providence, R.I., 1973. MR**0352177** - I. N. Herstein,
*Noncommutative rings*, The Carus Mathematical Monographs, No. 15, Mathematical Association of America; distributed by John Wiley & Sons, Inc., New York, 1968. MR**0227205** - Irving Kaplansky,
*Fields and rings*, University of Chicago Press, Chicago, Ill.-London, 1969. MR**0269449** - Irving Kaplansky,
*Commutative rings*, Allyn and Bacon, Inc., Boston, Mass., 1970. MR**0254021** - George S. Rinehart,
*Note on the global dimension of a certain ring*, Proc. Amer. Math. Soc.**13**(1962), 341–346. MR**137747**, DOI 10.1090/S0002-9939-1962-0137747-7 - George S. Rinehart and Alex Rosenberg,
*The global dimensions of Ore extensions and Weyl algebras*, Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), Academic Press, New York, 1976, pp. 169–180. MR**0409563** - Jan-Erik Roos,
*Détermination de la dimension homologique globale des algèbres de Weyl*, C. R. Acad. Sci. Paris Sér. A-B**274**(1972), A23–A26 (French). MR**292914** - Francis L. Sandomierski,
*Semisimple maximal quotient rings*, Trans. Amer. Math. Soc.**128**(1967), 112–120. MR**214624**, DOI 10.1090/S0002-9947-1967-0214624-3

## Bibliographic Information

- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**209**(1975), 65-85 - MSC: Primary 16A72
- DOI: https://doi.org/10.1090/S0002-9947-1975-0382359-7
- MathSciNet review: 0382359