Measures associated with Toeplitz matrices generated by the Laurent expansion of rational functions
HTML articles powered by AMS MathViewer
- by K. Michael Day
- Trans. Amer. Math. Soc. 209 (1975), 175-183
- DOI: https://doi.org/10.1090/S0002-9947-1975-0383018-7
- PDF | Request permission
Abstract:
Let ${T_n}(a) = ({a_{i - j}})_{i,j = 0}^n$ be the finite Toeplitz matrices generated by the Laurent expansion of an arbitrary rational function, and let ${\sigma _n} = \{ {\lambda _{n0}}, \ldots ,{\lambda _{nn}}\}$ be the corresponding sets of eigenvalues of ${T_n}(f)$. Define a sequence of measures ${\alpha _n},{\alpha _n}(E) = {(n + 1)^{ - 1}}{\Sigma _{{\lambda _{ni}} \in E}}1,{\lambda _{ni}} \in {\sigma _n}$, and $E$ a set in the $\lambda$-plane. It is shown that the weak limit $\alpha$ of the measures ${\alpha _n}$ is unique and possesses at most two atoms, and the function $f$ which give rise to atoms are identified.References
- Lennart Carleson, Mergelyan’s theorem on uniform polynomial approximation, Math. Scand. 15 (1964), 167–175. MR 198209, DOI 10.7146/math.scand.a-10741
- K. Michael Day, Toeplitz matrices generated by the Laurent series expansion of an arbitrary rational function, Trans. Amer. Math. Soc. 206 (1975), 224–245. MR 379803, DOI 10.1090/S0002-9947-1975-0379803-8
- Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, 1962. MR 0201608
- I. I. Hirschman Jr., The spectra of certain Toeplitz matrices, Illinois J. Math. 11 (1967), 145–159. MR 205070
- Palle Schmidt and Frank Spitzer, The Toeplitz matrices of an arbitrary Laurent polynomial, Math. Scand. 8 (1960), 15–38. MR 124665, DOI 10.7146/math.scand.a-10588
- J. L. Ullman, A problem of Schmidt and Spitzer, Bull. Amer. Math. Soc. 73 (1967), 883–885. MR 219986, DOI 10.1090/S0002-9904-1967-11826-3
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 209 (1975), 175-183
- MSC: Primary 45E10; Secondary 30A06
- DOI: https://doi.org/10.1090/S0002-9947-1975-0383018-7
- MathSciNet review: 0383018