## Measures associated with Toeplitz matrices generated by the Laurent expansion of rational functions

HTML articles powered by AMS MathViewer

- by K. Michael Day PDF
- Trans. Amer. Math. Soc.
**209**(1975), 175-183 Request permission

## Abstract:

Let ${T_n}(a) = ({a_{i - j}})_{i,j = 0}^n$ be the finite Toeplitz matrices generated by the Laurent expansion of an arbitrary rational function, and let ${\sigma _n} = \{ {\lambda _{n0}}, \ldots ,{\lambda _{nn}}\}$ be the corresponding sets of eigenvalues of ${T_n}(f)$. Define a sequence of measures ${\alpha _n},{\alpha _n}(E) = {(n + 1)^{ - 1}}{\Sigma _{{\lambda _{ni}} \in E}}1,{\lambda _{ni}} \in {\sigma _n}$, and $E$ a set in the $\lambda$-plane. It is shown that the weak limit $\alpha$ of the measures ${\alpha _n}$ is unique and possesses at most two atoms, and the function $f$ which give rise to atoms are identified.## References

- Lennart Carleson,
*Mergelyan’s theorem on uniform polynomial approximation*, Math. Scand.**15**(1964), 167–175. MR**198209**, DOI 10.7146/math.scand.a-10741 - K. Michael Day,
*Toeplitz matrices generated by the Laurent series expansion of an arbitrary rational function*, Trans. Amer. Math. Soc.**206**(1975), 224–245. MR**379803**, DOI 10.1090/S0002-9947-1975-0379803-8 - Einar Hille,
*Analytic function theory. Vol. II*, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, Ont., 1962. MR**0201608** - I. I. Hirschman Jr.,
*The spectra of certain Toeplitz matrices*, Illinois J. Math.**11**(1967), 145–159. MR**205070** - Palle Schmidt and Frank Spitzer,
*The Toeplitz matrices of an arbitrary Laurent polynomial*, Math. Scand.**8**(1960), 15–38. MR**124665**, DOI 10.7146/math.scand.a-10588 - J. L. Ullman,
*A problem of Schmidt and Spitzer*, Bull. Amer. Math. Soc.**73**(1967), 883–885. MR**219986**, DOI 10.1090/S0002-9904-1967-11826-3

## Additional Information

- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**209**(1975), 175-183 - MSC: Primary 45E10; Secondary 30A06
- DOI: https://doi.org/10.1090/S0002-9947-1975-0383018-7
- MathSciNet review: 0383018