Interpolation and uniqueness results for entire functions
HTML articles powered by AMS MathViewer
- by James D. Child PDF
- Trans. Amer. Math. Soc. 209 (1975), 199-209 Request permission
Abstract:
Let $K[\Omega ]$ denote the collection of entire functions of exponential type whose Borel transforms are analytic on ${\Omega ^c}$ (the complement of the simply connected domain taken relative to the sphere). Let $f$ be in $K[\Omega ]$ and set ${L_n}(f) = {(2\pi i)^{ - 1}}\smallint \Gamma {g_n}(\lambda )F(\lambda )d\lambda (n = 0,1, \ldots )$ where $F$ is the Borel transform of $f,\Gamma \subset \Omega$ is a simple closed contour chosen so that $F$ is analytic outside and on $\Gamma$ and each ${g_n}$ is in $H(\Omega )$ (the collection of functions analytic on $\Omega$). In what follows read ’the sequence of linear functionals $\{ {L_n}(f)\}$’ wherever the sequence of functions ’$\{ {g_n}\}$’ appears. Let $T$ denote a continuous linear operator from $H(\Omega )$ to $H(\Lambda )$ where $\Lambda$ is also a simply connected domain. The topologies on $H(\Omega )$ and $H(\Lambda )$ are those of uniform convergence on compact subsets of $\Omega$ (resp. $\Lambda$). The purpose of this paper is to consider uniqueness preserving operators, i.e., operators $T$ which have the property that $K[\Lambda ]$ is a uniqueness class for $\{ T({g_n})\}$ whenever $K[\Omega ]$ is a uniqueness class for $\{ {g_n}\}$, and to examine interpolation preserving operators, i.e., operators $T$ which have the property that $K[\Lambda ]$ interpolates the sequence of complex numbers $\{ {b_n}\}$ relative to $\{ T({g_n})\}$ whenever $K[\Omega ]$ interpolates $\{ {b_n}\}$ relatives to $\{ {g_n}\}$. Once some classes of uniqueness preserving operators and some classes of interpolation preserving operators have been found, we proceed to obtain new uniqueness and interpolation results from our knowledge of these operators and from previously known uniqueness and interpolation results. Operators which multiply by analytic functions and some differential operators are considered. Composition operators are studied and the results are used to extend the interpolation results for sequences of functions of the form $\{ {[W(\zeta )]^n}\}$ where $W$ is analytic and univalent on a simply connected domain.References
- Maynard G. Arsove, The Pincherle basis problem and a theorem of Boas, Math. Scand. 5 (1957), 271–275. MR 95281, DOI 10.7146/math.scand.a-10505
- Maynard G. Arsove, Proper bases and linear homeomorphisms in spaces of analytic functions, Math. Ann. 135 (1958), 235–243. MR 100787, DOI 10.1007/BF01351799
- Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
- Ralph P. Boas Jr. and R. Creighton Buck, Polynomial expansions of analytic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 19, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0094466, DOI 10.1007/978-3-642-87887-9
- R. Creighton Buck, Integral valued entire functions, Duke Math. J. 15 (1948), 879–891. MR 29984
- R. Creighton Buck, Interpolation series, Trans. Amer. Math. Soc. 64 (1948), 283–298. MR 29985, DOI 10.1090/S0002-9947-1948-0029985-6
- James D. Child, Uniqueness and interpolation results for entire functions of exponential type, Bull. Amer. Math. Soc. 79 (1973), 734–737. MR 320327, DOI 10.1090/S0002-9904-1973-13286-0
- Richard F. DeMar, Existence of interpolating functions of exponential type, Trans. Amer. Math. Soc. 105 (1962), 359–371. MR 141920, DOI 10.1090/S0002-9947-1962-0141920-6
- Richard F. DeMar, On a theorem concerning existence of interpolating functions, Trans. Amer. Math. Soc. 114 (1965), 23–29. MR 210903, DOI 10.1090/S0002-9947-1965-0210903-2
- Richard F. DeMar, A uniqueness theorem for entire functions, Proc. Amer. Math. Soc. 16 (1965), 69–71. MR 171919, DOI 10.1090/S0002-9939-1965-0171919-3 —, A study of interpolation series, Final Technical Report N.S.F. Grant #9619, 1970 (unpublished).
- R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR 0221256 A. O. Gel’fond, Interpolation et unicité des fonctions entières, Mat. Sb. 4 (1938), 115-147.
- W. Gontcharoff, Recherches sur les dérivées successives des fonctions analytiques. Généralisation de la série d’Abel, Ann. Sci. École Norm. Sup. (3) 47 (1930), 1–78 (French). MR 1509300, DOI 10.24033/asens.798
- Jacob Korevaar, S. S. Chern, Leon Ehrenpreis, W. H. J. Fuchs, and L. A. Rubel (eds.), Entire functions and related parts of analysis, Proceedings of Symposia in Pure Mathematics, XI, American Mathematical Society, Providence, R.I., 1968. MR 0232935 G. Köthe, Dualität in der Funktionentheorie, J. Reine Angew. Math. 191 (1953), 30-49. MR 15, 132.
- Gottfried Köthe, Topological vector spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York, Inc., New York, 1969. Translated from the German by D. J. H. Garling. MR 0248498
- Hari Shankar (ed.), Mathematical essays dedicated to A. J. Macintyre, Ohio University Press, Athens, Ohio, 1970. MR 0271311
Additional Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 209 (1975), 199-209
- MSC: Primary 30A80
- DOI: https://doi.org/10.1090/S0002-9947-1975-0387601-4
- MathSciNet review: 0387601