On rearrangements of Vilenkin-Fourier series which preserve almost everywhere convergence
HTML articles powered by AMS MathViewer
- by J. A. Gosselin and W. S. Young
- Trans. Amer. Math. Soc. 209 (1975), 157-174
- DOI: https://doi.org/10.1090/S0002-9947-1975-0399756-6
- PDF | Request permission
Abstract:
It is known that the partial sums of Vilenkin-Fourier series of ${L^q}$ functions $(q > 1)$ converge a.e. In this paper we establish the ${L^2}$ result for a class of rearrangements of the Vilenkin-Fourier series, and the ${L^q}$ result $(1 < q < 2)$ for a subclass of rearrangements. In the case of the Walsh-Fourier series, these classes include the Kaczmarz rearrangement studied by L. A. Balashov. The ${L^2}$ result for the Kaczmarz rearrangement was first proved by K. H. Moon. The techniques of proof involve a modification of the Carleson-Hunt method and estimates on maximal functions of the Hardy-Littlewood type that arise from these rearrangements.References
- L. A. Balašov, Series with respect to the Walsh system with monotone coefficients. , Sibirsk. Mat. Ž. 12 (1971), 25–39 (Russian). MR 0284758
- A. P. Calderón and A. Zygmund, A note on the interpolation of sublinear operations, Amer. J. Math. 78 (1956), 282–288. MR 82647, DOI 10.2307/2372516
- Lennart Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135–157. MR 199631, DOI 10.1007/BF02392815
- Kai Lai Chung, A course in probability theory, Harcourt, Brace & World, Inc., New York, 1968. MR 0229268
- John Gosselin, Almost everywhere convergence of Vilenkin-Fourier series, Trans. Amer. Math. Soc. 185 (1973), 345–370 (1974). MR 352883, DOI 10.1090/S0002-9947-1973-0352883-X
- Richard A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967) Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 235–255. MR 0238019 —, Almost everywhere convergence of Walsh-Fourier series of ${L^2}$ functions, Proc. Internat. Congress Math. (Nice, 1970), vol. 2, Gauthier-Villars, Paris, 1971, pp. 655-661.
- R. A. Hunt and M. H. Taibleson, Almost everywhere convergence of Fourier series on the ring of integers of a local field, SIAM J. Math. Anal. 2 (1971), 607–625. MR 312156, DOI 10.1137/0502060 K. H. Moon, Maximal functions related to certain linear operators, Doctoral Dissertation, Purdue University, West Lafayette, Ind., 1972.
- Per Sjölin, An inequality of Paley and convergence a.e. of Walsh-Fourier series, Ark. Mat. 7 (1969), 551–570. MR 241885, DOI 10.1007/BF02590894
- Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory. , Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR 0252961
- N. Ja. Vilenkin, On a class of complete orthonormal systems, Amer. Math. Soc. Transl. (2) 28 (1963), 1–35. MR 0154042, DOI 10.1090/trans2/028/01
- Daniel Waterman, $W$-systems are the Walsh functions, Bull. Amer. Math. Soc. 75 (1969), 139–142. MR 234196, DOI 10.1090/S0002-9904-1969-12179-8 W. S. Young, Maximal inequalities and almost everywhere convergence, Doctoral Dissertation, Purdue University, West Lafayette, Ind., 1973.
- Wo Sang Young, On rearrangements of Walsh-Fourier series and Hardy-Littlewood type maximal inequalities, Bull. Amer. Math. Soc. 80 (1974), 490–494. MR 333571, DOI 10.1090/S0002-9904-1974-13463-4
- Wo Sang Young, On the a.e. convergence of Walsh-Kaczmarz-Fourier series, Proc. Amer. Math. Soc. 44 (1974), 353–358. MR 350310, DOI 10.1090/S0002-9939-1974-0350310-6
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 209 (1975), 157-174
- MSC: Primary 43A50; Secondary 42A56
- DOI: https://doi.org/10.1090/S0002-9947-1975-0399756-6
- MathSciNet review: 0399756