Ramsey theorems for multiple copies of graphs
HTML articles powered by AMS MathViewer
- by S. A. Burr, P. Erdős and J. H. Spencer
- Trans. Amer. Math. Soc. 209 (1975), 87-99
- DOI: https://doi.org/10.1090/S0002-9947-1975-0409255-0
- PDF | Request permission
Abstract:
If $G$ and $H$ are graphs, define the Ramsey number $r(G,H)$ to be the least number $p$ such that if the edges of the complete graph ${K_p}$ are colored red and blue (say), either the red graph contains $G$ as a subgraph or the blue graph contains $H$. Let $mG$ denote the union of $m$ disjoint copies of $G$. The following result is proved: Let $G$ and $H$ have $k$ and $l$ points respectively and have point independence numbers of $i$ and $j$ respectively. Then $N - 1 \leqslant r(mG,nH) \leqslant N + C$, where $N = km + ln - min(mi,mj)$ and where $C$ is an effectively computable function of $G$ and $H$. The method used permits exact evaluation of $r(mG,nH)$ for various choices of $G$ and $H$, especially when $m = n$ or $G = H$. In particular, $r(m{K_3},n{K_3}) = 3m + 2n$ when $m \geqslant n,m \geqslant 2$.References
- Václav Chvátal and Frank Harary, Generalized Ramsey theory for graphs, Bull. Amer. Math. Soc. 78 (1972), 423–426. MR 291016, DOI 10.1090/S0002-9904-1972-12927-6
- Stefan A. Burr, Generalized Ramsey theory for graphs—a survey, Graphs and combinatorics (Proc. Capital Conf., George Washington Univ., Washington, D.C., 1973) Lecture Notes in Math., Vol. 406, Springer, Berlin, 1974, pp. 52–75. MR 0379210
- Frank Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London 1969. MR 0256911, DOI 10.21236/AD0705364
- E. J. Cockayne, An application of Ramsey’s theorem, Canad. Math. Bull. 13 (1970), 145–146. MR 262111, DOI 10.4153/CMB-1970-032-5
- J. W. Moon, Disjoint triangles in chromatic graphs, Math. Mag. 39 (1966), 259–261. MR 213259, DOI 10.2307/2689007
- Václav Chvátal and Frank Harary, Generalized Ramsey theory for graphs. II. Small diagonal numbers, Proc. Amer. Math. Soc. 32 (1972), 389–394. MR 332559, DOI 10.1090/S0002-9939-1972-0332559-X
- S. A. Burr, Diagonal Ramsey numbers for small graphs, J. Graph Theory 7 (1983), no. 1, 57–69. MR 693021, DOI 10.1002/jgt.3190070108
- Václav Chvátal and Frank Harary, Generalized Ramsey theory for graphs. III. Small off-diagonal numbers, Pacific J. Math. 41 (1972), 335–345. MR 314696, DOI 10.2140/pjm.1972.41.335
- Stefan A. Burr and John A. Roberts, On Ramsey numbers for linear forests, Discrete Math. 8 (1974), 245–250. MR 335325, DOI 10.1016/0012-365X(74)90136-8
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 209 (1975), 87-99
- MSC: Primary 05C15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0409255-0
- MathSciNet review: 0409255