A classification theorem for abelian $p$-groups
HTML articles powered by AMS MathViewer
- by R. B. Warfield
- Trans. Amer. Math. Soc. 210 (1975), 149-168
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372071-2
- PDF | Request permission
Abstract:
A new class of Abelian $p$-groups, called $S$-groups, is studied, and the groups in this class are classified in terms of cardinal invariants. The class of $S$-groups includes Nunke’s totally projective $p$-groups. The invariants consist of the Ulm invariants (which Hill has shown can be used to classify the totally projective groups) together with a new sequence of invariants indexed by limit ordinals which are not cofinal with $\omega$. The paper includes a fairly complete discussion of dense isotype subgroups of totally projective $p$-groups, including necessary and sufficient conditions for two of them to be congruent under the action of an automorphism of the group. It also includes an extension of Ulm’s theorem to a class of mixed modules over a discrete valuation ring.References
- B. Edington, Isomorphism invariants in quotient categories of Abelian groups, Thesis, New Mexico State University, 1972.
- L. Fuchs, Notes on abelian groups. II, Acta Math. Acad. Sci. Hungar. 11 (1960), 117–125 (English, with Russian summary). MR 125878, DOI 10.1007/BF02020629
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869
- D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366–391. MR 104728, DOI 10.2307/1970188
- D. K. Harrison, On the structure of $\textrm {Ext}$, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962) Scott, Foresman & Co., Chicago, Ill., 1963, pp. 195–209. MR 0242926
- Paul Hill, Isotype subgroups of direct sums of countable groups, Illinois J. Math. 13 (1969), 281–290. MR 240198 P. D. Hill, On the classification of Abelian groups, Mimeographed notes, 1968.
- Paul Hill and Charles Megibben, On direct sums of countable groups and generalizations, Studies on Abelian Groups (Symposium, Montpellier, 1967) Springer, Berlin, 1968, pp. 183–206. MR 0242943
- John M. Irwin and Elbert A. Walker, On $N$-high subgroups of Abelian groups, Pacific J. Math. 11 (1961), 1363–1374. MR 136653, DOI 10.2140/pjm.1961.11.1363
- J. M. Irwin and E. A. Walker, On isotype subgroups of Abelian groups, Bull. Soc. Math. France 89 (1961), 451–460. MR 147539, DOI 10.24033/bsmf.1570
- Irving Kaplansky, Infinite abelian groups, Revised edition, University of Michigan Press, Ann Arbor, Mich., 1969. MR 0233887
- L. Ya. Kulikov, Generalized primary groups. I, Trudy Moskov. Mat. Obšč. 1 (1952), 247–326 (Russian). MR 0049188
- Charles Megibben, On $p^{\alpha }$-high injectives, Math. Z. 122 (1971), 104–110. MR 299678, DOI 10.1007/BF01110084
- R. J. Nunke, Modules of extensions over Dedekind rings, Illinois J. Math. 3 (1959), 222–241. MR 102538, DOI 10.1215/ijm/1255455124
- R. J. Nunke, Purity and subfunctors of the identity, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962) Scott, Foresman & Co., Chicago, Ill., 1963, pp. 121–171. MR 0169913
- R. J. Nunke, Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182–212. MR 218452, DOI 10.1007/BF01135839
- R. J. Nunke, On the structure of $\textrm {Tor}$. II, Pacific J. Math. 22 (1967), 453–464. MR 214659, DOI 10.2140/pjm.1967.22.453
- R. J. Nunke, Uniquely elongating modules, Symposia Mathematica, Vol. XIII (Convegno di Gruppi Abeliani & Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972) Academic Press, London, 1974, pp. 315–330. MR 0364491
- Larry D. Parker and Elbert A. Walker, An extension of the Ulm-Kolettis theorems, Studies on Abelian Groups (Symposium, Montpellier, 1967) Springer, Berlin, 1968, pp. 309–325. MR 0265458 R. S. Pierce, Abelian Group Seminar Notes, New Mexico State University, 1968.
- Elbert A. Walker, Ulm’s theorem for totally projective groups, Proc. Amer. Math. Soc. 37 (1973), 387–392. MR 311805, DOI 10.1090/S0002-9939-1973-0311805-3
- R. B. Warfield Jr., Classification theorems for $p$-groups and modules over a discrete valuation ring, Bull. Amer. Math. Soc. 78 (1972), 88–92. MR 291284, DOI 10.1090/S0002-9904-1972-12870-2 B. Wick, Classification theorems for infinite Abelian groups, Thesis, University of Washington, 1972.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 210 (1975), 149-168
- MSC: Primary 20K10
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372071-2
- MathSciNet review: 0372071