## Nonlinear techniques for linear oscillation problems

HTML articles powered by AMS MathViewer

- by Zeev Nehari PDF
- Trans. Amer. Math. Soc.
**210**(1975), 387-406 Request permission

## Abstract:

It is shown that for differential equations of the form ${y^{(n)}} + py = 0$ there exist associated sets of systems of nonlinear equations which play a role similar to that of the ordinary Riccati equation in the case $n = 2$. In particular, the existence of continuous solutions of the nonlinear system is equivalent to the absence of certain types of oscillatory solutions of the linear equation. If $p$ is of constant sign, the coefficients of the “Riccati systems” are all nonnegative, and the resulting positivity and monotonicity properties make it possible to obtain explicit oscillation criteria for the original equation.## References

- Edwin F. Beckenbach and Richard Bellman,
*Inequalities*, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 30, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. MR**0158038**, DOI 10.1007/978-3-642-64971-4 - W. A. Coppel,
*Disconjugacy*, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR**0460785**, DOI 10.1007/BFb0058618 - Maurice Hanan,
*Oscillation criteria for third-order linear differential equations*, Pacific J. Math.**11**(1961), 919–944. MR**145160**, DOI 10.2140/pjm.1961.11.919 - Einar Hille,
*Non-oscillation theorems*, Trans. Amer. Math. Soc.**64**(1948), 234–252. MR**27925**, DOI 10.1090/S0002-9947-1948-0027925-7 - Henry Howard,
*Oscillation criteria for fourth-order linear differential equations*, Trans. Amer. Math. Soc.**96**(1960), 296–311. MR**117379**, DOI 10.1090/S0002-9947-1960-0117379-X - W. J. Kim,
*On the zeros of solutions of $y^{(n)}+py=0$*, J. Math. Anal. Appl.**25**(1969), 189–208. MR**247182**, DOI 10.1016/0022-247X(69)90222-4 - V. A. Kondrat′ev,
*Oscillatory properties of solutions of the equation $y^{(n)}+p(x)y=0$*, Trudy Moskov. Mat. Obšč.**10**(1961), 419–436 (Russian). MR**0141842** - Walter Leighton and Zeev Nehari,
*On the oscillation of solutions of self-adjoint linear differential equations of the fourth order*, Trans. Amer. Math. Soc.**89**(1958), 325–377. MR**102639**, DOI 10.1090/S0002-9947-1958-0102639-X - A. Ju. Levin,
*Some questions on the oscillation of solutions of linear differential equations*, Dokl. Akad. Nauk SSSR**148**(1963), 512–515 (Russian). MR**0146450** - A. Ju. Levin,
*On the distribution of zeros of solutions of a linear differential equation*, Dokl. Akad. Nauk SSSR**156**(1964), 1281–1284 (Russian). MR**0164079**
—, - Zeev Nehari,
*Non-oscillation criteria for $n-th$ order linear differential equations*, Duke Math. J.**32**(1965), 607–615. MR**186883** - Zeev Nehari,
*Disconjugate linear differential operators*, Trans. Amer. Math. Soc.**129**(1967), 500–516. MR**219781**, DOI 10.1090/S0002-9947-1967-0219781-0 - Zeev Nehari,
*Conjugate points, triangular matrices, and Riccati equations*, Trans. Amer. Math. Soc.**199**(1974), 181–198. MR**350113**, DOI 10.1090/S0002-9947-1974-0350113-7 - William T. Reid,
*Ordinary differential equations*, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR**0273082** - Thomas L. Sherman,
*Properties of solutions of $n\textrm {th}$ order linear differential equations*, Pacific J. Math.**15**(1965), 1045–1060. MR**185185**, DOI 10.2140/pjm.1965.15.1045 - C. A. Swanson,
*Comparison and oscillation theory of linear differential equations*, Mathematics in Science and Engineering, Vol. 48, Academic Press, New York-London, 1968. MR**0463570**

*The nonoscillation of solutions of the equation*${X^{(n)}} + {p_1}(t){X^{(n - 1)}} \times \ldots \times {p_n}(t)X = 0$, Uspehi Mat. Nauk 24 (1969), no. 2 (146), 43-96 = Russian Math. Surveys

**24**(1969), no. 2, 43-99. MR

**40**#7537.

## Additional Information

- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**210**(1975), 387-406 - MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372327-3
- MathSciNet review: 0372327