Nonlinear techniques for linear oscillation problems
HTML articles powered by AMS MathViewer
- by Zeev Nehari
- Trans. Amer. Math. Soc. 210 (1975), 387-406
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372327-3
- PDF | Request permission
Abstract:
It is shown that for differential equations of the form ${y^{(n)}} + py = 0$ there exist associated sets of systems of nonlinear equations which play a role similar to that of the ordinary Riccati equation in the case $n = 2$. In particular, the existence of continuous solutions of the nonlinear system is equivalent to the absence of certain types of oscillatory solutions of the linear equation. If $p$ is of constant sign, the coefficients of the “Riccati systems” are all nonnegative, and the resulting positivity and monotonicity properties make it possible to obtain explicit oscillation criteria for the original equation.References
- Edwin F. Beckenbach and Richard Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 30, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. MR 0158038, DOI 10.1007/978-3-642-64971-4
- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785, DOI 10.1007/BFb0058618
- Maurice Hanan, Oscillation criteria for third-order linear differential equations, Pacific J. Math. 11 (1961), 919–944. MR 145160, DOI 10.2140/pjm.1961.11.919
- Einar Hille, Non-oscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234–252. MR 27925, DOI 10.1090/S0002-9947-1948-0027925-7
- Henry Howard, Oscillation criteria for fourth-order linear differential equations, Trans. Amer. Math. Soc. 96 (1960), 296–311. MR 117379, DOI 10.1090/S0002-9947-1960-0117379-X
- W. J. Kim, On the zeros of solutions of $y^{(n)}+py=0$, J. Math. Anal. Appl. 25 (1969), 189–208. MR 247182, DOI 10.1016/0022-247X(69)90222-4
- V. A. Kondrat′ev, Oscillatory properties of solutions of the equation $y^{(n)}+p(x)y=0$, Trudy Moskov. Mat. Obšč. 10 (1961), 419–436 (Russian). MR 0141842
- Walter Leighton and Zeev Nehari, On the oscillation of solutions of self-adjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc. 89 (1958), 325–377. MR 102639, DOI 10.1090/S0002-9947-1958-0102639-X
- A. Ju. Levin, Some questions on the oscillation of solutions of linear differential equations, Dokl. Akad. Nauk SSSR 148 (1963), 512–515 (Russian). MR 0146450
- A. Ju. Levin, On the distribution of zeros of solutions of a linear differential equation, Dokl. Akad. Nauk SSSR 156 (1964), 1281–1284 (Russian). MR 0164079 —, The nonoscillation of solutions of the equation ${X^{(n)}} + {p_1}(t){X^{(n - 1)}} \times \ldots \times {p_n}(t)X = 0$, Uspehi Mat. Nauk 24 (1969), no. 2 (146), 43-96 = Russian Math. Surveys 24 (1969), no. 2, 43-99. MR 40 #7537.
- Zeev Nehari, Non-oscillation criteria for $n-th$ order linear differential equations, Duke Math. J. 32 (1965), 607–615. MR 186883
- Zeev Nehari, Disconjugate linear differential operators, Trans. Amer. Math. Soc. 129 (1967), 500–516. MR 219781, DOI 10.1090/S0002-9947-1967-0219781-0
- Zeev Nehari, Conjugate points, triangular matrices, and Riccati equations, Trans. Amer. Math. Soc. 199 (1974), 181–198. MR 350113, DOI 10.1090/S0002-9947-1974-0350113-7
- William T. Reid, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0273082
- Thomas L. Sherman, Properties of solutions of $n\textrm {th}$ order linear differential equations, Pacific J. Math. 15 (1965), 1045–1060. MR 185185, DOI 10.2140/pjm.1965.15.1045
- C. A. Swanson, Comparison and oscillation theory of linear differential equations, Mathematics in Science and Engineering, Vol. 48, Academic Press, New York-London, 1968. MR 0463570
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 210 (1975), 387-406
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372327-3
- MathSciNet review: 0372327