Concerning first countable spaces. III
HTML articles powered by AMS MathViewer
- by G. M. Reed
- Trans. Amer. Math. Soc. 210 (1975), 169-177
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372828-8
- PDF | Request permission
Abstract:
The primary purpose of this paper is (1) to provide a “real” example of a regular first countable ${T_1}$-space which has no dense developable subspace and (2) to provide a new technique for producing Moore spaces which fail to have dense metrizable subspaces. Related results are established which produce new examples of noncompletable Moore spaces and which show that each regular hereditary $M$-space with a ${G_\delta }$-diagonal has a dense metrizable subspace.References
- J. M. Aarts and D. J. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Math. (Rozprawy Mat.) 116 (1974), 48. MR 380745
- C. E. Aull, Topological spaces with a $\sigma$-point finite base, Proc. Amer. Math. Soc. 29 (1971), 411–416. MR 281154, DOI 10.1090/S0002-9939-1971-0281154-9
- R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175–186. MR 43449, DOI 10.4153/cjm-1951-022-3
- Ben Fitzpatrick Jr., On dense subspaces of Moore spaces, Proc. Amer. Math. Soc. 16 (1965), 1324–1328. MR 184190, DOI 10.1090/S0002-9939-1965-0184190-3
- Ben Fitzpatrick Jr., On dense subsets of Moore spaces. II, Fund. Math. 61 (1967), 91–92. MR 219036, DOI 10.4064/fm-61-1-91-92
- A. Miščenko, Spaces with a pointwise denumerable basis, Dokl. Akad. Nauk SSSR 144 (1962), 985–988 (Russian). MR 0138090
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722 —, A set of axioms for plane analysis situs, Fund. Math. 25 (1935), 13-28.
- Kiiti Morita, Some properties of $M$-spaces, Proc. Japan Acad. 43 (1967), 869–872. MR 227933
- Carl Pixley and Prabir Roy, Uncompletable Moore spaces, Proceedings of the Auburn Topology Conference (Auburn Univ., Auburn, Ala., 1969; dedicated to F. Burton Jones on the occasion of his 60th birthday), Auburn Univ., Auburn, Ala., 1969, pp. 75–85. MR 0397671
- C. W. Proctor, Metrizable subsets of Moore spaces, Fund. Math. 66 (1969/70), 85–93. MR 253284, DOI 10.4064/fm-66-1-85-93
- Franklin D. Tall, The normal Moore space problem, Topological structures, II (Proc. Sympos. Topology and Geom., Amsterdam, 1978) Math. Centre Tracts, vol. 116, Math. Centrum, Amsterdam, 1979, pp. 243–261. MR 565845
- G. M. Reed, Concerning first countable spaces, Fund. Math. 74 (1972), no. 3, 161–169. MR 319157, DOI 10.4064/fm-74-3-161-169
- G. M. Reed, Concerning first countable spaces. II, Duke Math. J. 40 (1973), 677–682. MR 319158
- G. M. Reed, Concerning normality, metrizability and the Souslin property in subspaces of Moore spaces, General Topology and Appl. 1 (1971), no. 3, 223–246. MR 290330, DOI 10.1016/0016-660X(71)90094-8
- G. M. Reed, Concerning completable Moore spaces, Proc. Amer. Math. Soc. 36 (1972), 591–596. MR 309074, DOI 10.1090/S0002-9939-1972-0309074-2
- G. M. Reed, On screenability and metrizability of Moore spaces, Canadian J. Math. 23 (1971), 1087–1092. MR 292026, DOI 10.4153/CJM-1971-113-3
- G. M. Reed, On completeness conditions and the Baire property in Moore spaces, TOPO 72—general topology and its applications (Proc. Second Pittsburgh Internat. Conf., Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), Lecture Notes in Math., Vol. 378, Springer, Berlin, 1974, pp. 368–384. MR 0358710
- G. M. Reed, On chain conditions in Moore spaces, General Topology and Appl. 4 (1974), 255–267. MR 345076, DOI 10.1016/0016-660X(74)90025-7
- G. M. Reed, On continuous images of Moore spaces, Canadian J. Math. 26 (1974), 1475–1479. MR 397672, DOI 10.4153/CJM-1974-142-3
- Mary Ellen Estill, Concerning abstract spaces, Duke Math. J. 17 (1950), 317–327. MR 42686
- Mary Ellen Estill, Separation in non-separable spaces, Duke Math. J. 18 (1951), 623–629. MR 42687 K. R. Van Doren, Inverse limits and closed mappings (to appear). —, Closed, continuous images of complete metric spaces (to appear).
- J. N. Younglove, Concerning dense metric subspaces of certain non-metric spaces, Fund. Math. 48 (1959), 15–25. MR 111011, DOI 10.4064/fm-48-1-15-25
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 210 (1975), 169-177
- MSC: Primary 54E30
- DOI: https://doi.org/10.1090/S0002-9947-1975-0372828-8
- MathSciNet review: 0372828