The center of an order with finite global dimension
HTML articles powered by AMS MathViewer
- by Mark Ramras
- Trans. Amer. Math. Soc. 210 (1975), 249-257
- DOI: https://doi.org/10.1090/S0002-9947-1975-0374191-5
- PDF | Request permission
Abstract:
Let $\Lambda$ be a quasi-local ring of global dimension $n < \infty$. Assume that its center $R$ is a noetherian domain, that $\Lambda$ is finitely generated torsion-free as an $R$-module, and that $R$ is an $R$-direct summand of $\Lambda$. Then $R$ is integrally closed in its quotient field $K$ and Macauley of dimension $n$. Furthermore, when $n = 2,\Lambda$ is a maximal $R$-order in the central simple $K$-algebra $\Lambda { \otimes _R}K$. This extends an earlier result of the author, in which $R$ was assumed to have global dimension 2. Examples are given to show that in the above situation $R$ can have infinite global dimension.References
- M. Auslander, Remarks on a theorem of Bourbaki, Nagoya Math. J. 27 (1966), 361–369. MR 193109, DOI 10.1017/S0027763000012113
- Maurice Auslander and David A. Buchsbaum, Codimension and multiplicity, Ann. of Math. (2) 68 (1958), 625–657. MR 99978, DOI 10.2307/1970159
- Maurice Auslander and Oscar Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1–24. MR 117252, DOI 10.1090/S0002-9947-1960-0117252-7
- Marie-José Bertin, Anneaux d’invariants d’anneaux de polynomes, en caractéristique $p$, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A653–A656 (French). MR 215826
- David Eisenbud, Subrings of Artinian and Noetherian rings, Math. Ann. 185 (1970), 247–249. MR 262275, DOI 10.1007/BF01350264
- K. L. Fields, On the global dimension of skew polynomial rings, J. Algebra 13 (1969), 1–4. MR 245623, DOI 10.1016/0021-8693(69)90002-7
- Manabu Harada, Hereditary orders, Trans. Amer. Math. Soc. 107 (1963), 273–290. MR 151489, DOI 10.1090/S0002-9947-1963-0151489-9
- M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058. MR 302643, DOI 10.2307/2373744
- Christian U. Jensen and Søren Jøndrup, Centres and fixed-point rings of Artinian rings, Math. Z. 130 (1973), 189–197. MR 318222, DOI 10.1007/BF01214261
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- K. R. Nagarajan, Groups acting on Noetherian rings, Nieuw Arch. Wisk. (3) 16 (1968), 25–29. MR 229628
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Mark Ramras, Maximal orders over regular local rings of dimension two, Trans. Amer. Math. Soc. 142 (1969), 457–479. MR 245572, DOI 10.1090/S0002-9947-1969-0245572-2
- Mark Ramras, Maximal orders over regular local rings, Trans. Amer. Math. Soc. 155 (1971), 345–352. MR 272808, DOI 10.1090/S0002-9947-1971-0272808-3
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 210 (1975), 249-257
- MSC: Primary 16A60
- DOI: https://doi.org/10.1090/S0002-9947-1975-0374191-5
- MathSciNet review: 0374191