The similarity orbit of a normal operator
HTML articles powered by AMS MathViewer
- by L. A. Fialkow
- Trans. Amer. Math. Soc. 210 (1975), 129-137
- DOI: https://doi.org/10.1090/S0002-9947-1975-0374956-X
- PDF | Request permission
Abstract:
If $N$ is a bounded normal operator on a separable Hilbert space $\mathcal {H}$, let $\mathcal {S}(N)$ denote the similarity orbit of $N$ in $L(\mathcal {H})$ and let ${\mathcal {S}_k}(N)$ denote the set of all compact perturbations of elements of $\mathcal {S}(N)$. It is proved that $\mathcal {S}(N)({\mathcal {S}_K}(N))$ is norm closed in $L(\mathcal {H})$ if and only if the spectrum (essential spectrum) of $N$ is finite. If the essential spectrum of $N$ is infinite and $M$ is a normal operator whose spectrum is connected and contains that of $N$, then $M$ is in the closure of $\mathcal {S}(N)$. If the spectrum of $N$ is connected, this result characterizes the normal elements of the closure of $\mathcal {S}(N)$. A normal operator is similar to a nonquasidiagonal operator if and only if its essential spectrum contains more than two points.References
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $C^{\ast }$-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 58–128. MR 0380478
- R. G. Douglas and Carl Pearcy, A note on quasitriangular operators, Duke Math. J. 37 (1970), 177–188. MR 257790, DOI 10.1215/S0012-7094-70-03724-5
- P. A. Fillmore, J. G. Stampfli, and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179–192. MR 322534
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
- P. R. Halmos, Capacity in Banach algebras, Indiana Univ. Math. J. 20 (1970/71), 855–863. MR 268672, DOI 10.1512/iumj.1971.20.20067
- P. R. Halmos, Limits of shifts, Acta Sci. Math. (Szeged) 34 (1973), 131–139. MR 338812
- Domingo A. Herrero, Normal limits of nilpotent operators, Indiana Univ. Math. J. 23 (1973/74), 1097–1108. MR 350476, DOI 10.1512/iumj.1974.23.23089
- Richard B. Holmes and Bernard R. Kripke, Best approximation by compact operators, Indiana Univ. Math. J. 21 (1971/72), 255–263. MR 296659, DOI 10.1512/iumj.1971.21.21020 T. Hoover, Thesis, University of Michigan, Ann. Arbor, Mich., 1970.
- Catherine L. Olsen, A structure theorem for polynomially compact operators, Amer. J. Math. 93 (1971), 686–698. MR 405152, DOI 10.2307/2373464
- Carl Pearcy and Norberto Salinas, Compact perturbations of seminormal operators, Indiana Univ. Math. J. 22 (1972/73), 789–793. MR 313851, DOI 10.1512/iumj.1973.22.22064
- Carl Pearcy and Norberto Salinas, Operators with compact self-commutator, Canadian J. Math. 26 (1974), 115–120. MR 336436, DOI 10.4153/CJM-1974-012-2
- C. R. Putnam, The spectra of operators having resolvents of first-order growth, Trans. Amer. Math. Soc. 133 (1968), 505–510. MR 229073, DOI 10.1090/S0002-9947-1968-0229073-2
- C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323–330. MR 270193, DOI 10.1007/BF01111839
- Norberto Salinas, Operators with essentially disconnected spectrum, Acta Sci. Math. (Szeged) 33 (1972), 193–205. MR 350450 R. Smucker, Quasidiagonal and quasitriangular operators, Thesis, Indiana University, Bloomington, Ind., 1973.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 210 (1975), 129-137
- MSC: Primary 47A55; Secondary 47B15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0374956-X
- MathSciNet review: 0374956