Topological extension properties
HTML articles powered by AMS MathViewer
- by R. Grant Woods
- Trans. Amer. Math. Soc. 210 (1975), 365-385
- DOI: https://doi.org/10.1090/S0002-9947-1975-0375238-2
- PDF | Request permission
Abstract:
It is known that if a topological property $\mathcal {P}$ of Tychonoff spaces is closed-hereditary, productive, and possessed by all compact $\mathcal {P}$-regular spaces, then each $\mathcal {P}$-regular space $X$ is a dense subspace of a space ${\gamma _\mathcal {P}}X$ with $\mathcal {P}$ such that if $Y$ has $\mathcal {P}$ and $f:X \to Y$ is continuous, then $f$ extends continuously to ${f^\gamma }:{\gamma _\mathcal {P}}X \to Y$. Such topological properties are called extension properties; ${\gamma _\mathcal {P}}X$ is called the maximal $\mathcal {P}$-extension of $X$. In this paper we study the relationships between pairs of extension properties and their maximal extensions. A basic tool is the concept of $\mathcal {P}$-pseudocompactness, which is studied in detail (a $\mathcal {P}$-regular space $X$ is $\mathcal {P}$-pseudocompact if ${\gamma _\mathcal {P}}X$ is compact). A classification of extension properties is attempted, and several means of constructing extension properties are studied. A number of examples are considered in detail.References
- Norman L. Alling, Rings of continuous integer-valued functions and nonstandard arithmetic, Trans. Amer. Math. Soc. 118 (1965), 498–525. MR 184960, DOI 10.1090/S0002-9947-1965-0184960-6
- Allen R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1969/70), 185–193. MR 251697, DOI 10.4064/fm-66-2-185-193
- Robert L. Blefko, Some classes of $E$-compactness, J. Austral. Math. Soc. 13 (1972), 492–500. MR 0314000, DOI 10.1017/S1446788700009241
- Eduard Čech, On bicompact spaces, Ann. of Math. (2) 38 (1937), no. 4, 823–844. MR 1503374, DOI 10.2307/1968839
- W. W. Comfort, On the Hewitt realcompactification of a product space, Trans. Amer. Math. Soc. 131 (1968), 107–118. MR 222846, DOI 10.1090/S0002-9947-1968-0222846-1
- Nancy Dykes, Mappings and realcompact spaces, Pacific J. Math. 31 (1969), 347–358. MR 263039, DOI 10.2140/pjm.1969.31.347
- Zdeněk Frolík, A generalization of realcompact spaces, Czechoslovak Math. J. 13(88) (1963), 127–138 (English, with Russian summary). MR 155289, DOI 10.21136/CMJ.1963.100555 Z. Frolík and S. Mrowka, Perfect images of ${\mathbf {R}}$-and ${\mathbf {N}}$-compact spaces, Bull. Acad. Polon. Sci. (to appear).
- John Ginsburg and Victor Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), no. 2, 403–418. MR 380736, DOI 10.2140/pjm.1975.57.403
- Andrew M. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958), 482–489. MR 121775
- Irving Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369–382. MR 105667, DOI 10.1090/S0002-9947-1959-0105667-4
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- Horst Herrlich, ${\mathfrak {E}}$-kompakte Räume, Math. Z. 96 (1967), 228–255 (German). MR 205218, DOI 10.1007/BF01124082
- H. Herrlich and J. van der Slot, Properties which are closely related to compactness, Nederl. Akad. Wetensch. Proc. Ser. A 70=Indag. Math. 29 (1967), 524–529. MR 0222848, DOI 10.1016/S1385-7258(67)50068-9
- Edwin Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc. 64 (1948), 45–99. MR 26239, DOI 10.1090/S0002-9947-1948-0026239-9
- S. Mrówka, Further results on $E$-compact spaces. I, Acta Math. 120 (1968), 161–185. MR 226576, DOI 10.1007/BF02394609
- S. Mrówka, Some comments on the author’s example of a non-${\cal R}$-compact space, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 443–448 (English, with Russian summary). MR 268852
- Peter Nyikos, Prabir Roy’s space $\Delta$ is not $N$-compact, General Topology and Appl. 3 (1973), 197–210. MR 324657, DOI 10.1016/0016-660X(72)90012-8
- R. S. Pierce, Rings of integer-valued continuous functions, Trans. Amer. Math. Soc. 100 (1961), 371–394. MR 131438, DOI 10.1090/S0002-9947-1961-0131438-8
- Roman Sikorski, Boolean algebras, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 25, Academic Press, Inc., New York; Springer-Verlag, Berlin-New York, 1964. MR 0177920
- M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), no. 3, 375–481. MR 1501905, DOI 10.1090/S0002-9947-1937-1501905-7
- Dona Papert Strauss, Extremally disconnected spaces, Proc. Amer. Math. Soc. 18 (1967), 305–309. MR 210066, DOI 10.1090/S0002-9939-1967-0210066-0
- J. van der Slot, Some properties related to compactness, Mathematical Centre Tracts, vol. 19, Mathematisch Centrum, Amsterdam, 1968. MR 0247607
- R. Grant Woods, Some $\aleph _{O}$-bounded subsets of Stone-Čech compactifications, Israel J. Math. 9 (1971), 250–256. MR 278266, DOI 10.1007/BF02771590
- R. Grant Woods, Co-absolutes of remainders of Stone-Čech compactifications, Pacific J. Math. 37 (1971), 545–560. MR 307179, DOI 10.2140/pjm.1971.37.545
- R. Grant Woods, Ideals of pseudocompact regular closed sets and absolutes of Hewitt realcompactifications, General Topology and Appl. 2 (1972), 315–331. MR 319152, DOI 10.1016/0016-660X(72)90024-4
- R. Grant Woods, A Tychonoff almost realcompactification, Proc. Amer. Math. Soc. 43 (1974), 200–208. MR 331330, DOI 10.1090/S0002-9939-1974-0331330-4
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 210 (1975), 365-385
- MSC: Primary 54D35
- DOI: https://doi.org/10.1090/S0002-9947-1975-0375238-2
- MathSciNet review: 0375238