Duality for Hadamard products with applications to extremal problems for functions regular in the unit disc
HTML articles powered by AMS MathViewer
- by Stephan Ruscheweyh
- Trans. Amer. Math. Soc. 210 (1975), 63-74
- DOI: https://doi.org/10.1090/S0002-9947-1975-0382626-7
- PDF | Request permission
Abstract:
Let $A$ be the set of functions regular in the unit disc $\mathcal {U}$ and ${A_0}$ the set of all functions $f \in A$ which satisfy $f(0) = 1$. For $V \subset {A_0}$ define the dual set ${V^ \ast } = \{ f \in {A_0}|f \ast g \ne 0{\text { for all }}g \in V,z \in \mathcal {U}\} ,{V^{ \ast \ast }} = {({V^ \ast })^ \ast }$. Here $f \ast g$ denotes the Hadamard product. THEOREM. Let $V \subset {A_0}$ have the following properties: (i) $V$ is compact, (ii) $f \in V$ implies $f(xz) \in V$ for all $|x| \leqslant 1$. Then $\lambda (V) = \lambda ({V^{ \ast \ast }})$ for all continuous linear functionals $\lambda$ on $A$. This theorem has many applications to functions in $A$ which are defined by properties like bounded real part, close-to-convexity, univalence etc.References
- L. Brickman, T. H. MacGregor, and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91–107. MR 274734, DOI 10.1090/S0002-9947-1971-0274734-2
- Peter L. Duren and Renate McLaughlin, Two-slit mappings and the Marx conjecture, Michigan Math. J. 19 (1972), 267–273. MR 304630
- R. S. Gupta, Radius of convexity of a class of univalent functions, J. Indian Math. Soc. (N.S.) 36 (1972), 291–296 (1973). MR 328047
- J. A. Hummel, The Marx conjecture for starlike functions, Michigan Math. J. 19 (1972), 257–266. MR 304629, DOI 10.1307/mmj/1029000898
- J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578, DOI 10.1007/978-3-662-41914-4
- T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532–537. MR 140674, DOI 10.1090/S0002-9947-1962-0140674-7 A. Marx, Untersuchungen über schlichte Abbildungen, Math. Ann. 107 (1932), 40-67.
- Yoshikazu Miki, A note on close-to-convex functions, J. Math. Soc. Japan 8 (1956), 256–268. MR 91343, DOI 10.2969/jmsj/00830256
- Stephan Ruscheweyh, Über die Faltung schlichter Funktionen, Math. Z. 128 (1972), 85–92 (German). MR 318470, DOI 10.1007/BF01111515
- Stephan Ruscheweyh and Karl-Joachim Wirths, Über die Faltung schlichter Funktionen. II, Math. Z. 131 (1973), 11–23 (German). MR 320297, DOI 10.1007/BF01213823
- St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119–135. MR 328051, DOI 10.1007/BF02566116
- Otto Toeplitz, Die linearen vollkommenen Räume der Funktionentheorie, Comment. Math. Helv. 23 (1949), 222–242 (German). MR 32952, DOI 10.1007/BF02565600
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 210 (1975), 63-74
- MSC: Primary 30A40; Secondary 30A10
- DOI: https://doi.org/10.1090/S0002-9947-1975-0382626-7
- MathSciNet review: 0382626