Topological dynamics and $C^{\ast }$-algebras
HTML articles powered by AMS MathViewer
- by William L. Green
- Trans. Amer. Math. Soc. 210 (1975), 107-121
- DOI: https://doi.org/10.1090/S0002-9947-1975-0383091-6
- PDF | Request permission
Abstract:
If $G$ is a group of automorphisms of a ${C^ \ast }$-algebra $A$ with identity, then $G$ acts in a natural way as a transformation group on the state space $S(A)$ of $A$. Moreover, this action is uniformly almost periodic if and only if $G$ has compact pointwise closure in the space of all maps of $A$ into $A$. Consideration of the enveloping semigroup of $(S(A),G)$ shows that, in this case, this pointwise closure $\bar G$ is a compact topological group consisting of automorphisms of $A$. The Haar measure on $\bar G$ is used to define an analogue of the canonical center-valued trace on a finite von Neumann algebra. If $A$ possesses a sufficiently large group ${G_0}$ of inner automorphisms such that $(S(A),{G_0})$ is uniformly almost periodic, then $A$ is a central ${C^ \ast }$-algebra. The notion of a uniquely ergodic system is applied to give necessary and sufficient conditions that an approximately finite dimensional ${C^ \ast }$-algebra possess exactly one finite trace.References
- Johan F. Aarnes, Edward G. Effros, and Ole A. Nielsen, Locally compact spaces and two classes of $C^{\ast }$-algebras, Pacific J. Math. 34 (1970), 1–16. MR 271745, DOI 10.2140/pjm.1970.34.1
- Erik M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57, Springer-Verlag, New York-Heidelberg, 1971. MR 0445271, DOI 10.1007/978-3-642-65009-3
- Ola Bratteli, Inductive limits of finite dimensional $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 171 (1972), 195–234. MR 312282, DOI 10.1090/S0002-9947-1972-0312282-2
- Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition, revue et augmentée. MR 0352996
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
- Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. MR 0267561
- Edward G. Effros and Frank Hahn, Locally compact transformation groups and $C^{\ast }$- algebras, Memoirs of the American Mathematical Society, No. 75, American Mathematical Society, Providence, R.I., 1967. MR 0227310
- James G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318–340. MR 112057, DOI 10.1090/S0002-9947-1960-0112057-5
- Siegfried Grosser and Martin Moskowitz, On central topological groups, Trans. Amer. Math. Soc. 127 (1967), 317–340. MR 209394, DOI 10.1090/S0002-9947-1967-0209394-9
- Richard V. Kadison, The trace in finite operator algebras, Proc. Amer. Math. Soc. 12 (1961), 973–977. MR 139961, DOI 10.1090/S0002-9939-1961-0139961-2
- Richard V. Kadison, Transformations of states in operator theory and dynamics, Topology 3 (1965), no. suppl, suppl. 2, 177–198. MR 169073, DOI 10.1016/0040-9383(65)90075-3
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Richard D. Mosak, The $L^{1}$- and $C^{\ast }$-algebras of $[FIA]^{-}_{B}$ groups, and their representations, Trans. Amer. Math. Soc. 163 (1972), 277–310. MR 293016, DOI 10.1090/S0002-9947-1972-0293016-7
- B. H. Neumann, Groups with finite classes of conjugate elements, Proc. London Math. Soc. (3) 1 (1951), 178–187. MR 43779, DOI 10.1112/plms/s3-1.1.178
- John C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116–136. MR 47262, DOI 10.1090/S0002-9904-1952-09580-X
- L. S. Pontriaguin, Continuous groups, Editorial Mir, Moscow, 1978 (Spanish). Translated from the third Russian edition by Carlos Vega. MR 528130
- Erling Størmer, Invariant states of von Neumann algebras, Math. Scand. 30 (1972), 253–256. MR 318909, DOI 10.7146/math.scand.a-11080
- Erling Størmer, Large groups of automorphisms of $C^{\ast }$-algebras, Comm. Math. Phys. 5 (1967), 1–22. MR 226422, DOI 10.1007/BF01646355
- Elmar Thoma, Zur harmonischen Analyse klassenfiniter Gruppen, Invent. Math. 3 (1967), 20–42 (German). MR 213479, DOI 10.1007/BF01425489
- Kôsaku Yosida, Functional analysis, Die Grundlehren der mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR 0180824
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 210 (1975), 107-121
- MSC: Primary 46L05; Secondary 54H15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0383091-6
- MathSciNet review: 0383091