On the construction of the Bockstein spectral sequence
HTML articles powered by AMS MathViewer
- by Jerrold Siegel
- Trans. Amer. Math. Soc. 210 (1975), 203-224
- DOI: https://doi.org/10.1090/S0002-9947-1975-0394664-9
- PDF | Request permission
Abstract:
The Bockstein spectral sequence is developed from a direct limit construction. This is shown to clarify its relation to certain associated structures, in particular the divided power operations. Finally, the direct limit construction is used to study the problem of enumerating the Bockstein spectral sequences over a given simple $R$-module.References
- William Browder, Torsion in $H$-spaces, Ann. of Math. (2) 74 (1961), 24–51. MR 124891, DOI 10.2307/1970305
- William Browder, Homotopy commutative $H$-spaces, Ann. of Math. (2) 75 (1962), 283–311. MR 150778, DOI 10.2307/1970175
- William Browder and Isaac Namioka, $H$-spaces with commutative homology rings, Ann. of Math. (2) 75 (1962), 449–451. MR 148070, DOI 10.2307/1970207
- J. L. Dupont and G. Lusztig, On manifolds satisfying $w_{1}{}^{2}=0$, Topology 10 (1971), 81–92. MR 273631, DOI 10.1016/0040-9383(71)90031-0
- B. Eckmann and P. J. Hilton, Exact couples in an abelian category, J. Algebra 3 (1966), 38–87. MR 191937, DOI 10.1016/0021-8693(66)90019-6 S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
- Emery Thomas, The generalized Pontrjagin cohomology operations and rings with divided powers, Mem. Amer. Math. Soc. 27 (1957), 82. MR 99029
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 210 (1975), 203-224
- MSC: Primary 55H25
- DOI: https://doi.org/10.1090/S0002-9947-1975-0394664-9
- MathSciNet review: 0394664