A property of finite $p$-groups with trivial multiplicator
HTML articles powered by AMS MathViewer
- by Michael R. Jones
- Trans. Amer. Math. Soc. 210 (1975), 179-183
- DOI: https://doi.org/10.1090/S0002-9947-1975-0444772-9
- PDF | Request permission
Abstract:
A sufficient condition for a finite $2$-generator $p$-group to have nontrivial multiplicator is given. To show that this result is best possible, a finite $2$-group with trivial multiplicator is constructed.References
- N. Blackburn, On prime-power groups with two generators, Proc. Cambridge Philos. Soc. 54 (1958), 327–337. MR 102557, DOI 10.1017/s0305004100033521
- W. Gaschütz, J. Neubüser, and Ti Yen, Über den Multiplikator von $p$-Gruppen, Math. Z. 100 (1967), 93–96 (German). MR 217181, DOI 10.1007/BF01110785
- W. Gaschütz and M. F. Newman, On presentations of finite $p$-groups, J. Reine Angew. Math. 245 (1970), 172–176. MR 271225, DOI 10.1515/crll.1970.245.172
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703, DOI 10.1007/978-3-642-64981-3
- Michael R. Jones, Some inequalities for the multiplicator of a finite group, Proc. Amer. Math. Soc. 39 (1973), 450–456. MR 314975, DOI 10.1090/S0002-9939-1973-0314975-6
- J. W. Wamsley, The defiency of metacyclic groups, Proc. Amer. Math. Soc. 24 (1970), 724–726. MR 258931, DOI 10.1090/S0002-9939-1970-0258931-2
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 210 (1975), 179-183
- MSC: Primary 20D15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0444772-9
- MathSciNet review: 0444772