Localization and sheaf reflectors
HTML articles powered by AMS MathViewer
- by J. Lambek and B. A. Rattray
- Trans. Amer. Math. Soc. 210 (1975), 279-293
- DOI: https://doi.org/10.1090/S0002-9947-1975-0447364-0
- PDF | Request permission
Abstract:
Given a triple $(S,\eta ,\mu )$ on a category $\mathcal {A}$ with equalizers, one can form a new triple whose functor $Q$ is the equalizer of $\eta S$ and $S\eta$. Fakir has studied conditions for $Q$ to be idempotent, that is, to determine a reflective subcategory of $\mathcal {A}$. Here we regard $S$ as the composition of an adjoint pair of functors and give several new such conditions. As one application we construct a reflector in an elementary topos $\mathcal {A}$ from an injective object $I$, taking $S = {I^{{I^{( - )}}}}$. We show that this reflector preserves finite limits and that the sheaf reflector for a topology in $\mathcal {A}$ can be obtained in this way. We also show that sheaf reflectors in functor categories can be obtained from a triple of the form $S = {I^{( - ,I)}},I$ injective, which we studied in a previous paper. We deduce that the opposite of a sheaf subcategory of a functor category is tripleable over Sets.References
- H. Appelgate and M. Tierney, Categories with models, Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67) Springer, Berlin, 1969, pp. 156–244. MR 0242916
- H. Applegate and M. Tierney, Iterated cotriples, Reports of the Midwest Category Seminar, IV, Lecture Notes in Mathematics, Vol. 137, Springer, Berlin, 1970, pp. 56–99. MR 0265429
- Michael Barr, Non-abelian torsion theories, Canadian J. Math. 25 (1973), 1224–1237. MR 360741, DOI 10.4153/CJM-1973-130-4
- Marta C. Bunge, Relative functor categories and categories of algebras, J. Algebra 11 (1969), 64–101. MR 236238, DOI 10.1016/0021-8693(69)90102-1
- J. Duskin, Variations on Beck’s tripleability criterion, Reports of the Midwest Category Seminar, III, Springer, Berlin, 1969, pp. 74–129. MR 0252471
- Sabah Fakir, Monade idempotente associée à une monade, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A99–A101 (French). MR 257174
- Peter Freyd, Aspect of topoi, Bull. Austral. Math. Soc. 7 (1972), 1–76. MR 396714, DOI 10.1017/S0004972700044828
- A. Kock and G. C. Wraith, Elementary toposes, Lecture Notes Series, No. 30, Aarhus Universitet, Matematisk Institut, Aarhus, 1971. MR 0342578
- J. Lambek and B. A. Rattray, Localization at injectives in complete categories, Proc. Amer. Math. Soc. 41 (1973), 1–9. MR 414651, DOI 10.1090/S0002-9939-1973-0414651-5
- F. W. Lawvere, Quantifiers and sheaves, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 329–334. MR 0430021
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872 H.-M. Meyer, Spektraltopoi, Universität Tübingen, 1972 (preprint). C. J. Mikkelsen, Internal completeness of elementary topoi, Thesis, Aarhus University, 1973.
- Basil A. Rattray, Torsion theories in non-additive categories, Manuscripta Math. 12 (1974), 285–305. MR 340360, DOI 10.1007/BF01155518
- Claus Michael Ringel, Monofunctors as reflectors, Trans. Amer. Math. Soc. 161 (1971), 293–306. MR 292907, DOI 10.1090/S0002-9947-1971-0292907-X M. Tierney, Axiomatic sheaf theory, Bull. Amer. Math. Soc. (to appear). F. Ulmer, On modules and objects which are flat over their endomorphism rings, Universität Zürich, 1971/72 (preprint).
- Friedrich Ulmer, On the existence and exactness of the associated sheaf functor, J. Pure Appl. Algebra 3 (1971), 295–306. MR 374231, DOI 10.1016/0022-4049(73)90033-9 D. H. Van Osdol, Sheaves in regular categories, Lecture Notes in Math., vol. 236, Springer-Verlag, New York, 1971, pp. 223-239.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 210 (1975), 279-293
- MSC: Primary 18C15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0447364-0
- MathSciNet review: 0447364