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ABSTRACT.  Fixed points of endomorphisms of representations, i.e.

functors into the category of sets, are investigated.   A necessary and

sufficient condition on a category  K is given for each of its indecompos-

able representations to have the fixed point property.   The condition

appears to be the same as that found by Isbell and Mitchell for Colim:

Ab     —  Ab to be exact.   A well-known theorem on mappings of Katetov

and Kenyon is extended to transformations of functors.

Introduction.   A representation of a category  K, i.e. a covariant functor

E from  K to the category of sets, is said to have the fixed point property

if each transformation r: E —» E has a fixed point, i.e. x £ FM with r"{x) =

x.   The aim of the current paper is to express the fixed point property by

algebraic means.   Clearly, all representations of a category never have the

fixed point property:   if E is any representation then the transformation of

the sum F y F which interchanges copies of E has no fixed points.   There-

fore it seems natural to try to characterize those categories whose all in-

decomposable representations have the fixed point property; a representation

E is indecomposable if it is nontrivial, i.e. distinct from the constant functor

to 0, and cannot be expressed as E = Ej V E2 with E.  nontrivial.   We

call these categories Brouwerian.

It is our pleasant duty to express our gratitude to Vera TrnkoVa'for the

attention paid to our work, which she has also initiated by putting the problem

of generalization of the theorem on mappings by Katètov and Kenyon (see below).

I.   Properties of Brouwerian categories.

Theorem 1.1.   Each indecomposable representation of a Brouwerian

category is hereditarily indecomposable, i.e. each of its subfunctors is

indecomposable.   Equivalently, each two nontrivial subfunctors have a non-

trivial intersection.

Proof. Assume the contrary. Then we have indecomposable represen-

tations H, Hv H2 with HlCH, H2CH and HxnH2 = 0.  The colimit of
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which is indecomposable.   Indeed, a representation is indecomposable iff

its colimit is a singleton set 1.  Now, denote by D: 3) —»Set    the diagram

(*) and define /:   $ x K -» Set by ](d, X) = (Dd)X.   Then F = Colim^ Id, -)

and so Colim F = Colim^ Colim . J(d,  X)=Colim . Colimx/(ti, X) and since

H, H., H2 ate indecomposable, we have Colim, Colim^ ](d, X) = Colim , 1 = 1.

Because of the symmetry of (*), ^n.Aí¡^n ls also its direct bound

(+ is the addition mod 8).   Thus, there is a unique transformation r;   F —* F

with t . i   = z    4 .   The transformation has no fixed points.   Indeed, F con-

sists of four copies of H glued as follows:   the first one with the second

one in Wj, the second one with the third one in H2, the third one with the

fourth one in Hl and the fourth one with the first one in //,.   In particular,

the nth copy of H (n = 1, 2, 3, 4) is disjoint with the (n + 2)nd (+ is the

addition mod 4).   But t sends the nth copy isomorphically just onto the

(n + 2)nd so that T cannot have fixed points.   This concludes the proof.

The condition of the above theorem is not sufficient for a category to

be Brouwerian, as will be seen from the characterization of Brouwerian

categories and

Proposition 1.2.   Given a category  K, the following conditions are

equivalent.

(i)   Each indecomposable representation of K is hereditarily indecom-

posable.

(ii)  For each indecomposable representation  F of K and each x e FM,

y e FN there exist morphisms f: M —* X, g :   N —» X with fx = gy.
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FIXED POINTS IN REPRESENTATIONS OF CATEGORIES 241

(iii)  Each diagram (a) z'b K can be embedded into a commutative one

(b):

Proof,   (i) —» (iii).   Let /t:   M—>Nvf2:   M —► N2 be given.   Let //j

CHom (M, -), /7jX= [hf^ h: Nx —> X}, analogously   //2.   As Hom(/Vl, -) is

indecomposable and //j, H2 are nontrivial, they are not disjoint and (iii)

follows.

(iii) —» (ii).   Fix x £ FM and for each object A denote GA = \t £ FA;

there exist /: M —» X, g: A —» X with /x = gri and G2A = FA - GXA.   (iii)

implies that G,  is a subfunctor of E; in fact, let h: A —» B, t £ G^A.   Then

fx = gt  for some g, /; due to (iii), there exist g , h   with g'g =h h.   Then

{fg')x = {h'h)t.   Thus /»Î eGjB.   Therefore Gj is a subfunctor of E.  Clearly,

G2 is a subfunctor of E, too:   let h:  A —» B, t £ G2A.   If ht £ G.J} then

fx = g/>/ for some /, g and so t £ GjA which is a contradiction.   Therefore,

*>i eG2B.

As E is indecomposable and Gj is nontrivial {x £ G.M), F = G y.

(ii) —» (i).   Let E be an indecomposable representation of K, G.  and

G2 its disjoint subfunctors.   Then G,  or G2 is trivial because otherwise there

are x £ GjM, y e G2N and, given f: M —* X, g: N —» X with fx = gy = z we

have z eGjX flG2X.   This concludes the proof.    D

The following theorem generalizes a theorem on mappings proved by

Katëtov [5] and Kenyon [6]:   For each set X and each mapping /: X —» X

without fixed points there exists a decomposition of X into disjoint subsets

Xj, X2, X,  such that /(X¿) ("I X¿ = 0, i = 1, 2, 3.   Our paper was, in fact,

initiated by Vera Trnkova, who suggested that the above theorem should be

generalized for functor-categories.

Theorem 1.3.   A category is Brouwerian iff for each of its representations

F and each transformation r; F —» E without fixed points there exists a

decomposition F - Fx V E2 V E3 such that riß\) n F{ is trivial, i =

1, 2, 3.

Proof.   Let K be Brouwerian, E:   K —* Set.   Each element x £ FM

generates an indecomposable subfunctor Hx C E, HxN = {y; y = fx for some

/:   M —» A/!.   Therefore, E is a disjoint union of its maximal indecomposable

subfunctors, F =  Vy e/Py   If r: E —» E then clearly for each j £ J there is

r;. e / with KF^.) C E¿..   Apply the above theorem on the mapping i —+ t¿:   As

K is Brouwerian, if r has no fixed points, clearly i 4 t. for all z, and so the
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242 J. ADÁMEK AND J. REITERMAN

set / can be decomposed into subsets /., /-, J.  as above.   Put F. =

V;e; Fyi analogously Fr Fy

Let K not be Brouwerian. Let F be an indecomposable representation

of K and let t: F —* F have no fixed points. F cannot be decomposed into

Fj, F2, F, with t(F.) n F. trivial simply because two of the three functors

would be trivial, as F is indecomposable.

Theorem 1.4.   Let F be an indecomposable representation of a Brou-

werian category.   Then every collection r , . • • , r   of endomorphisms of F

has a common fixed point, i.e. there exists M and x e FM with r?(x)= x,

i " 1, ••• , n.

Proof.   For each z = 1, • •• , n, let F. be the subfunctor of F such that

for every object M, FM is just the set of all fixed points of rv.   By Theorem

1.1, two, and hence finitely many, nontrivial subfunctors of F have always a non-

trivial intersection.   Thus (]"  , P. is nontrivial so that r., ... , r   have
l si     z in

a common fixed point.

The preceding theorem can be regarded as a fixed point theorem for a

multiple of transformations. The following theorem is a formulation of the

fixed point point property for a multivalued transformation.

Given a representation  F of a category  K, by a multitransformation

r:   F —> F we shall mean a partial nonvoid multivalued transformation, that

is, a family |r   } such that

(1) M runs over all K-objects,

(2) each f     is a partial multivalued mapping of FM to FM, i.e., simply

7a1 C FM x FM,

(3) if (x, y) e r** and /: M -» N then (/*, /y) e r*,

(4) some r™ is nonvoid.

Note that F, equipped with a multitransformation, can be regarded as a

functor into the category of graphs and compatible maps.   In fact, r" is a

graph on FM, and condition (3) ensures the compatibility of maps Ff:   FM

-*FN.

We shall need some graph-theoretical notions.   Let (X, R) be a graph.

A sequence aQ, a^, ••• , an of its vertices is called a chain from aQ to a

with length n if for each  z = 1, • • • , n either («<_«! «,) e R or (t^-, <*,-_i) €

R.   In the former case put m{ = 1, in the latter put m{ = - 1; then m =

|S"=17?z¿|   is called the characteristic of the chain.   If aQ = an, the chain is

called a cycle.   A chain with pairwise distinct vertices is regular if m = n,

i.e., roughly speaking, if the direction of arrows («•,» «•) is either always

the same as in R or the opposite one.   Analogously regular cycle.   Given
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FIXED POINTS IN REPRESENTATIONS OF CATEGORIES 243

an infinite sequence a. oí vertices, it is called a chain (a regular chain) if

each subsequence a,, ••• , a   is a chain (regular chain).

Theorem 1.5.   A category is Brouwerian iff every multitransformation of

each of its indecomposable representations has a cycle with characteristic 1.

Proof.  If a category fulfills the above condition then it is Brouwerian:

if r isa transformation then all its cycles with pairwise distinct vertices

are regular and thus a cycle with characteristic 1 is just x, x with x a fixed

point of r.

Let K be a Brouwerian category, r; F —* F a multitransformation of an

indecomposable representation E of K.  We shall show that T has a cycle

with characteristic 1.   Define a congruence ~ on E as follows: if x, y £ FM

then x~M y iff there is a chain with characteristic 0 from x to y in t  ,

Clearly for /: M —»N in K, *~M y implies fx~Nfy and so we may define

a factor functor of E under ~, G = E/~.   As a factor functor of an idecompos-
M

able functor, G is also indecomposable.   For each M, let a    be the quotient

graph of ^ with respect to~M: aM = \{[x], [y]); {x, y) e r**} where [ ] de-

notes the congruence classes.   Then a = {a   } is a multitransformation of

G.  Moreover, a is single-valued and one-to-one, that is:

(a) for each / £ GM, {t, u) £ a    for at most one u £ GM,

(b) for each u £ GM, {t, u) £ aM fot at most one t £ GM.

To prove (a), assume {t, u.) £oM  fot i = 1, 2.   Then we have some

{x., y.) £ r^ where [x.] = t, [y¿] = u{, i = 1, 2.   As [xj] = [x2], there is a

chain Xj = an, tfj, ••• , an = x2 with characteristic 0 in r™.   Then yx,

aQ, ... ,an, y2 is a chain with characteristic -1 + 0+1 = 0 from yx to

y2, hence [y¡]= [y2l, i.e. «j = zz2.   (b) is analogous.

So we have proved that each component of {GM, a  ) is either a regular

cycle or a regular chain.   There are two possibilities:

I. Some {GM, a  ) contains a regular cycle, a  , ... ,a , an.   Let H

be the subfunctor of G generated by the set {a , . •. , a {, let p be the

restriction of o to //.   Then p is a transformation with p"+   = 1.   By Theo-

rem 1.1, H is indecomposable, so that p has a fixed point, i.e. there is M and / £

GM with {t, t) £ pM.   We have a chain bn, • • • , è     with [è.] = [b   ] = t in

r  * ̂ 77i' ^0^ e        Then &0, ••• , bm, bQ is a cycle with characteristic 1.

That concludes the proof.

II. No {GM, a' ) contains a cycle. Then components of any (GAI, a )

ate regular chains.   Moreover, there is an object Z such that {GZ, a )

contains a regular chain of length > 2 (e.g., consider a chain /jX, fxy,

f2y where {x, y) £a    is arbitrary, f x: M —» Z, f2: M —» Z are chosen so
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244 J. ADAMEK AND J. REITERMAN

that /j* = f2y; see 1.2).   Let H be a subfunctor of G generated by a

regular  chain of length >  2.      Let « be a congruence on   H, x « M y iff

there is a chain of an even length from x to y in a   .   Put H' = ///».

For each   M, let CTj   be the quotient graph of a     with respect to»^.

Then components of o.    ate regular cycles of length   2   so that

{o-j j   is a transformation without fixed points.   This is a contradiction

because H' is clearly indecomposable; thus case II cannot occur.    D

II.    Characterization.     Recall that a category   K is filtered [l] if

(1) for every pair   M, N of objects there is an object  Z with

Hom(M,    Z) 4 0 4 Hom(/V. Z),

(2) for every pair /j, f2-   M —* N of morphisms there is h: N —* Z

with A/j = hf2.

We shall say that a category   K is   quasifiltered if it satisfies

(1) above and

(2*)   for every pair   f., /,: M —♦ N of morphisms there are morphisms

h., h.,..., h  :   N —» Z  such that

*n/-   = Äi/- »

h,f.   = h,f. ,\'i2        2'72'

*      i/«   = *«/,•  'n-l"ra       « 7«

A  A     , = hJ.       ,
»'»n+i    0/>*+r

where i(, jf ate  1 or 2 and  l^^1 (z'r - jt)\ = 1.

Let us observe that a category has filtered (quasifiltered) compon-

ents iff it fulfills (2) ((2 ')) and(iii) of 1.2.   A filtered category is quasi-

filtered, of course.   The converse fails to be true.

Example (Isbell and Mitchell [4]).   The category of finite ordinals

and order preserving injections is quasifiltered but not filtered.

Theorem 2.1 (The Characterization Theorem).   A category is

Brouwerian iff it has quasifiltered components.

Proof.   Sufficiency.   Let  K have quasifiltered components.

Consider a transformation  r:> F —* F where F is an indecomposable

representation of K.   We shall prove that r has a fixed point.

Choose an arbitrary object M with FM 4 0 and choose a e FM.   Apply-

ing Proposition 1.2 (ii) on a, rM(a) we get K-morphisms f., /2 : M —» N
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with fxa = f2TM{a).    There exist K-morphisms hQ, hxt,,t ,hn, A    . = hQ:

N —» Z with b -Jfi = hj.   where |S(z"t - j{)\ = 1.   Denote

k

xk={rM)Ha);       yfe= ( VlK    and    ^ . £ (i, - Q
t=l

(for k < n + l).   The proof will be concluded when we show that for all

k <n+ 1,

(+) ( VlK = yn-pk-

Indeed, then AQ = A    j yields yn = yn+p   and since pn+1 = ±1, clearly

yn is a fixed point of T (recall that *^*Wn-\l-yn a°d      ^yn^~ Yn*l^'

The proposition (+) holds for k = 0; let us prove it for k + 1 assuming

that it holds for k < n.   We have Afc/.       = A.   j/y        which we apply to xn

if jk  , = 1, or to x^   j if jk  j = 2.   Then the proof is very easy when we

take into consideration that pk  . = Pk+ *'¿+i - 7¿+i and that r"{y     • _*,)»

y„_n while 'z(yn_i,Jfe) = yn+1.i),.

Necessity.   If K is a Brouwerian category then it satisfies (iii) of 1.2, so

that to show that K has quasifiltered components it suffices to prove (2 ).

Let /,, f2:M —*N be given.   Define a multitransformation T: Hom(Al,-)—*

Horn (A!, -) by r* = {(A/j, hf 2); h: N -» X}.   By 1.5 there is a cycle aQ,

«,,••• , «n> ßQ with characteristic 1 in some Horn (M, Z).   For every t =

1, ••• ,b either (ß,_,> <0 e r     or (fl,» at-\> e T   •   Thus there are morphisms

AQ, • • • , A  : N —» Z and numbers z'j, /j. z'2» j2, • • • , z     j. /     j = 1, 2 such

that

(V fli> = ( V,„+i' Vtl>'

iav a2) - ihxfh, h^),

{a     ,, a) ={h     A. h       f   )

{a , aA = {h f. , h /•      ).
n'     u 72 ';n>    7j'z7j + l

Now (2 ) follows immediately.   The characteristic of the cycle aQ, • •• a ,

a0 1S

1 = K'\ - /   , i) + («'•> - 7i) + (za -/,) + •*• + (*'    - /'      ,) + ii   J.1 - / )|'     1       'n + l 2      J1 3      '2 n      'rz-l n + 1       '72 '

72 + 1

<=1

The necessary and sufficient condition on a small category  K to be
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Brouwerian turns out to be the same as that for Colim:  Ab   —» Ab to be

exact (Isbell and Mitchell [4]); Ab is the category of Abelian groups.   In fact,

Colim:  AB    —♦ Ab is exact iff the category äff K has filtered components

UL  Here aff K denotes the category with the same objects as  K such that

morphisms from M to AI in aff K ate those elements Sa./, of the free

Abelian group over Hom„(M, N) with  2a. = 1.   The composition in aff K is

defined by (1a.f.)(2ß.g.)= 1(a.ß.)/.g..   It follows easily by [4, Lemma l]

that aff K has filtered components iff K has quasifiltered ones.   This

enables us to formulate a proposition of [4] in terms of Brouwerian categories.

Theorem 2.2.   Let each component C of a category K possess a weak

terminal object, i.e. an object T such that Horn (M, T) 4 0 for M e C.   Then

K is Brouwerian iff it has filtered components.

Corollary 2.3 [3l   A monoid is Brouwerian iff it is filtered.

Let us note that 2.3 follows from [l] too.

It follows immediately from the characterization theorem that a preord-

ed class is a Brouwerian category iff it has directed components.   More

generally,

Proposition 2.4.   Let  K be a category such that for each object M there

is a natural number n(M) which is bigger or equal to the number of morphisms

from M to any given object.   Then   K is Brouwerian iff it has filtered

components.

Proof.   Let K be a category which is Brouwerian and fulfills the above

condition.   Let f, g: M —* N.   We have to find k with kf = kg.   As K fulfills

1.2 (iii) the following defines a congruence ~ on Hom(M, -): it p, q e

Horn (M, X) then p ~x q iff kp = kq fot some k.  Denote F = Hom(M, -)/~.

Clearly, for any morphism /, the mapping Ff is one-to-one.   Moreover, for

any object X, |FX| < |Hom (M, X)\ <n(M).  Thus, we can choose among all

X with Horn (M, X) 4 0 such an object C that |FC| is maximal.   Let h:

N —► C.   Notice that for each morphism r with domain C, Fr is a bijection.

Due to 1.2 (iii), there are  /', g': C —» D with f'hf= g'hg.   We shall show

that Ff = Fg'.   Then we get Ff'([hf]) = Fg'([hf]), i.eAj'hf] = [g'hf] and

so there is k' with k'g'hf - k'f hf = k'g'hg; put k = k g h; then kf = kg.

To prove Ff' = Fg', put /j = /' and f2 - g   and let hQ, • • • , hn,

h    , = hn be from condition (2'), i.e. F(h f.     )= F(h    ./.      ) where
7Z+1        o t zi + 1 1 + 1 7i + 1

l^?.t ^t ~ Í¿\ = lm   Then for the morPhism m = Ff2(Ff1)~ l we get:
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EAn = Fh    , = EA   - /b(í" + 1"7" + i)= EA     . • TO(,"+1"," + l). m(i"~irn)
0 72 + 1 »2 72-1

= • • • = rhQ . m = rhr.m

Therefore EAQ = EAQ « m and since EAQ is one-to-one, clearly m = id,

i.e. E/j = E/2 .
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