On subnormal operators
HTML articles powered by AMS MathViewer
- by Mehdi Radjabalipour
- Trans. Amer. Math. Soc. 211 (1975), 377-389
- DOI: https://doi.org/10.1090/S0002-9947-1975-0377574-2
- PDF | Request permission
Abstract:
Let T be the adjoint of a subnormal operator defined on a Hilbert space H. For any closed set $\delta$, let ${X_T}(\delta ) = \{ x \in H$: there exists an analytic function ${f_x}:{\text {C}}\backslash \delta \to H$ such that $(z - T){f_x}(z) \equiv x\}$. It is shown that T is decomposable (resp. normal) if ${X_T}(\partial {G_\alpha })$ is closed (resp. if ${X_T}(\partial {G_\alpha }) = \{ 0\} )$ for a certain family $\{ {G_\alpha }\}$ of open sets. Some of the results are extended to the case that T is the adjoint of the restriction of a spectral or decomposable operator to an invariant subspace.References
- C. Apostol, Restrictions and quotients of decomposable operators in a Banach space, Rev. Roumaine Math. Pures Appl. 13 (1968), 147–150. MR 231231
- C. Apostol, Roots of decomposable operator-valued analytic functions, Rev. Roumaine Math. Pures Appl. 13 (1968), 433–438. MR 233225 J. Bastian, Dissertation, Indiana University, 1973.
- James E. Brennan, Approximation in the mean and quasianalyticity, J. Functional Analysis 12 (1973), 307–320. MR 0344481, DOI 10.1016/0022-1236(73)90082-7
- M. S. Brodskiĭ, Triangular and Jordan representations of linear operators, Translations of Mathematical Monographs, Vol. 32, American Mathematical Society, Providence, R.I., 1971. Translated from the Russian by J. M. Danskin. MR 0322542
- K. F. Clancey and C. R. Putnam, The local spectral behavior of completely subnormal operators, Trans. Amer. Math. Soc. 163 (1972), 239–244. MR 291844, DOI 10.1090/S0002-9947-1972-0291844-5
- Ion Colojoară and Ciprian Foiaş, Theory of generalized spectral operators, Mathematics and its Applications, Vol. 9, Gordon and Breach Science Publishers, New York-London-Paris, 1968. MR 0394282 N. Dunford and J. T. Schwartz, Linear operators. III: Spectral operators, Interscience, New York, 1971. C. Foiaş, Some applications of spectral sets. I. Harmonic-spectral measure, Akad. R. P. Romîne. Stud. Cerc. Mat. 10 (1959), 365-401; English transl., Amer. Math. Soc. Transl. (2) 61 (1967), 25-62. MR 22 #8340.
- Ştefan Frunză, A duality theorem for decomposable operators, Rev. Roumaine Math. Pures Appl. 16 (1971), 1055–1058. MR 301552
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- A. S. Markus, Certain criteria for the completeness of a system of root-vectors of a linear operator in a Banach space, Mat. Sb. (N.S.) 70 (112) (1966), 526–561 (Russian). MR 0216316 M. A. Naĭmark, Normed rings, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1959. MR 19, 870; 22 #1824.
- Stephen Plafker, On decomposable operators, Proc. Amer. Math. Soc. 24 (1970), 215–216. MR 248552, DOI 10.1090/S0002-9939-1970-0248552-X
- C. R. Putnam, Eigenvalues and boundary spectra, Illinois J. Math. 12 (1968), 278–282. MR 226440, DOI 10.1215/ijm/1256054217
- C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323–330. MR 270193, DOI 10.1007/BF01111839
- C. R. Putnam, Resolvent vectors, invariant subspaces, and sets of zero capacity, Math. Ann. 205 (1973), 165–171. MR 326428, DOI 10.1007/BF01350843
- J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469–476. MR 173161, DOI 10.1090/S0002-9947-1965-0173161-3
- J. G. Stampfli, A local spectral theory for operators. III. Resolvents, spectral sets and similarity, Trans. Amer. Math. Soc. 168 (1972), 133–151. MR 295114, DOI 10.1090/S0002-9947-1972-0295114-0 —, Spectral subspaces of hyponormal operators (to appear).
- Angus E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0098966
- Lawrence Zalcmann, Analytic capacity and rational approximation, Lecture Notes in Mathematics, No. 50, Springer-Verlag, Berlin-New York, 1968. MR 0227434, DOI 10.1007/BFb0070657
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 211 (1975), 377-389
- MSC: Primary 47B20
- DOI: https://doi.org/10.1090/S0002-9947-1975-0377574-2
- MathSciNet review: 0377574