Unions of Hilbert cubes
HTML articles powered by AMS MathViewer
- by Raymond Y. T. Wong and Nelly Kroonenberg
- Trans. Amer. Math. Soc. 211 (1975), 289-297
- DOI: https://doi.org/10.1090/S0002-9947-1975-0377895-3
- PDF | Request permission
Abstract:
This paper gives a partial solution to the problem whether the union of two Hilbert cubes is a Hilbert cube if the intersection is a Hilbert cube and a Z-set in one of them. Our results imply West’s Intermediate Sum Theorem on Hilbert cube factors. Also a technique is developed to obtain Z-sets as limits of Z-sets.References
- R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365–383. MR 214041, DOI 10.1307/mmj/1028999787 —, On sigma-compact subsets of infinite-dimensional spaces, Trans. Amer. Math. Soc. (to appear). W. Barit, Small extensions of small homeomorphisms, Notices Amer. Math. Soc. 16 (1969), 295. Abstract #663-715.
- Morton Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478–483. MR 115157, DOI 10.1090/S0002-9939-1960-0115157-4
- D. W. Curtis and R. M. Schori, $2^{x}$ and $C(X)$ are homeomorphic to the Hilbert cube, Bull. Amer. Math. Soc. 80 (1974), 927–931. MR 353235, DOI 10.1090/S0002-9904-1974-13579-2
- Nelly Kroonenberg, Characterization of finite-dimensional $Z$-sets, Proc. Amer. Math. Soc. 43 (1974), 421–427. MR 334221, DOI 10.1090/S0002-9939-1974-0334221-8
- H. Toruńczyk, Remarks on Anderson’s paper: “On topological infinte deficiency”, Fund. Math. 66 (1969/70), 393–401. (errata insert). MR 261536, DOI 10.4064/fm-66-3-393-401
- James E. West, Infinite products which are Hilbert cubes, Trans. Amer. Math. Soc. 150 (1970), 1–25. MR 266147, DOI 10.1090/S0002-9947-1970-0266147-3 —, Sums of Hilbert cube factors (preprint).
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 211 (1975), 289-297
- MSC: Primary 57A20; Secondary 54B10, 54F40
- DOI: https://doi.org/10.1090/S0002-9947-1975-0377895-3
- MathSciNet review: 0377895