Semifree actions on homotopy spheres
HTML articles powered by AMS MathViewer
- by Kai Wang
- Trans. Amer. Math. Soc. 211 (1975), 321-337
- DOI: https://doi.org/10.1090/S0002-9947-1975-0377951-X
- PDF | Request permission
Abstract:
In this paper, we study the semifree ${Z_m}$ actions on homotopy sphere pairs. We show that in some cases the equivariant normal bundle to the fixed point set is equivariantly stably trivial. We compute the rank of the torsion free part of the group of semifree actions on homotopy sphere pairs in some cases. We also show that there exist infinitely many semifree ${Z_{4s}}$ actions on even dimensional homotopy sphere pairs.References
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604. MR 236952, DOI 10.2307/1970717
- William Browder, Surgery and the theory of differentiable transformation groups, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 1–46. MR 0261629
- William Browder and Ted Petrie, Diffeomorphisms of manifolds and semifree actions on homotopy spheres, Bull. Amer. Math. Soc. 77 (1971), 160–163. MR 273636, DOI 10.1090/S0002-9904-1971-12646-0
- F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 9, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956 (German). MR 0082174
- Melvin Rothenberg, Differentiable group actions on spheres, Proc. Advanced Study Inst. on Algebraic Topology (Aarhus, 1970) Aarhus Univ., Matematisk Inst., Aarhus, 1970, pp. 455–475. MR 0301764
- M. Rothenberg and J. Sondow, Nonlinear smooth representations of compact Lie groups, Pacific J. Math. 84 (1979), no. 2, 427–444. MR 568660, DOI 10.2140/pjm.1979.84.427
- Ted Petrie, The Atiyah-Singer invariant, the Wall groups $L_{n}(\pi ,\,1)$, and the function $(te^{x}+1)/(te^{x}-1)$, Ann. of Math. (2) 92 (1970), 174–187. MR 319216, DOI 10.2307/1970701
- Reinhard Schultz, Rational $h$-cobordism invariants for lens space bundles, Quart. J. Math. Oxford Ser. (2) 25 (1974), 497–511. MR 372898, DOI 10.1093/qmath/25.1.497
- Kai Wang, Differentiable actions on $2n$-spheres, Bull. Amer. Math. Soc. 78 (1972), 971–973. MR 309142, DOI 10.1090/S0002-9904-1972-13072-6
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 211 (1975), 321-337
- MSC: Primary 57E15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0377951-X
- MathSciNet review: 0377951