On the two sheeted coverings of conics by elliptic curves
HTML articles powered by AMS MathViewer
- by R. E. MacRae
- Trans. Amer. Math. Soc. 211 (1975), 277-287
- DOI: https://doi.org/10.1090/S0002-9947-1975-0379509-5
- PDF | Request permission
Abstract:
Let K be the field of algebraic functions on an elliptic curve that can be described by an equation of the form ${y^2} = f(x)$ where $f(x)$ is a quartic polynomial over a field k. Moreover, assume that the Riemann surface for K contains no points rational over k. When k is the field of real numbers it is well known that K may also be expressed as a quadratic extension of a function field $L = k(u,v)$ of algebraic functions on a conic whose Riemann surface also contains no points rational over k. We extend this result to p-adic ground fields k. Moreover, we describe the various subfields of index two and genus zero (conic subfields) in terms of the k-rational points on the Jacobian of K. This is done for arbitrary ground fields. In particular, the embedding of the projective class group of K (over k) is seen to describe exactly those conic subfields that possess k-rational points.References
- J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193–291. MR 199150, DOI 10.1112/jlms/s1-41.1.193
- Martin Eichler, Einführung in die Theorie der algebraischen Zahlen und Funktionen, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 27, Birkhäuser Verlag, Basel-Stuttgart, 1963 (German). MR 0168561, DOI 10.1007/978-3-0348-6946-1
- R. E. MacRae and Pierre Samuel, Subfields of index $2$ of elliptic function fields, Conference on Commutative Algebra (Univ. Kansas, Lawrence, Kan., 1972), Lecture Notes in Math., Vol. 311, Springer, Berlin, 1973, pp. 171–193. MR 0337979 G. Poitou, Dans les pas de François Chatalet, Journées Arithmétiques, 1965, Faculté des Science de Besancon.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 211 (1975), 277-287
- MSC: Primary 14H05; Secondary 14H30
- DOI: https://doi.org/10.1090/S0002-9947-1975-0379509-5
- MathSciNet review: 0379509