Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On Kōmura's closed-graph theorem

Author: Michael H. Powell
Journal: Trans. Amer. Math. Soc. 211 (1975), 391-426
MSC: Primary 46A30
MathSciNet review: 0380339
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (\alpha )$ be a property of separated locally convex spaces. Call a locally convex space $ E[\mathcal{J}]$ an $ (\bar \alpha )$-space if $ \mathcal{J}$ is the final topology defined by $ {\{ {u_i}:{E_i}[{\mathcal{J}_i}] \to E\} _{i \in I}}$, where each $ {E_i}[{\mathcal{J}_i}]$ is an $ (\alpha )$-space. Then, for each locally convex space $ E[\mathcal{J}]$, there is a weakest $ (\bar \alpha )$-topology on E stronger that $ \mathcal{J}$, denoted $ {\mathcal{J}^{\bar \alpha }}$.

Kōmura's closed-graph theorem states that the following statements about a locally convex space $ E[\mathcal{J}]$ are equivalent:

(1) For every $ (\alpha )$-space F and every closed linear map $ u: F \to E[\mathcal{J}]$, u is continuous.

(2) For every separated locally convex topology $ {\mathcal{J}_0}$ on E, weaker than $ \mathcal{J}$, we have $ \mathcal{J} \subset \mathcal{J}_0^{\bar \alpha }$.

Much of this paper is devoted to amplifying Kōmura's theorem in special cases, some well-known, others not.

An entire class of special cases, generalizing Adasch's theory of infra-(s) spaces, is established by considering a certain class of functors, defined on the category of locally convex spaces, each functor yielding various notions of ``completeness'' in the dual space.

References [Enhancements On Off] (What's this?)

  • [1] Norbert Adasch, Tonnelierte Räume und zwei Sätze von Banach, Math. Ann. 186 (1970), 209–214 (German). MR 0467230,
  • [2] J. Dacord and M. Jourlin, Sur les pré compacts d'un éspace localement convexe, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A463-A466. MR 47 #751.
  • [3] Marc De Wilde, Théorème du graphe fermé et espaces à réseau absorbant, Bull. Math. Soc. Sci. Math. R. S. Roumanie 11 (59) (1967), 225–238 (1968) (French). MR 0230103
  • [4] Marc De Wilde, Sur le théorème du graphe fermé, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A376–A379 (French). MR 0222597
  • [5] Marc De Wilde, Réseaux dans les espaces linéaires à semi-normes, Mém. Soc. Roy. Sci. Liège Coll. in-8^{∘} (5) 18 (1969), no. 2, 144 (French). MR 0285885
  • [6] V. Eberhardt, Durch Graphensätze definierte lokalkonvexe Räume, Dissertation, Munich, 1972.
  • [7] John Horváth, Topological vector spaces and distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0205028
  • [8] Gottfried Köthe, Topological vector spaces. I, Translated from the German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York Inc., New York, 1969. MR 0248498
  • [9] Yukio Kōmura, On linear topological spaces, Kumamoto J. Sci. Ser. A 5 (1962), 148–157 (1962). MR 0151817
  • [10] Vlastimil Pták, Completeness and the open mapping theorem, Bull. Soc. Math. France 86 (1958), 41–74. MR 0105606
  • [11] Manuel Valdivia Ureña, The general closed graph theorem in locally convex topological vector spaces, Rev. Acad. Ci. Madrid 62 (1968), 545–551 (Spanish, with English summary). MR 0240593

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A30

Retrieve articles in all journals with MSC: 46A30

Additional Information

Article copyright: © Copyright 1975 American Mathematical Society