Commutative regular rings with integral closure
HTML articles powered by AMS MathViewer
- by L. Lipshitz PDF
- Trans. Amer. Math. Soc. 211 (1975), 161-170 Request permission
Abstract:
First order conditions are given which are necessary for a commutative regular ring to have a prime integrally closed extension. If the ring is countable these conditions are also sufficient.References
- Andrew B. Carson, The model completion of the theory of commutative regular rings, J. Algebra 27 (1973), 136–146. MR 387046, DOI 10.1016/0021-8693(73)90169-5
- Joachim Lambek, Lectures on rings and modules, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR 0206032
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- L. Lipshitz, Commutative regular rings with integral closure, Trans. Amer. Math. Soc. 211 (1975), 161–170. MR 396254, DOI 10.1090/S0002-9947-1975-0396254-0
- L. Lipshitz and D. Saracino, The model companion of the theory of commutative rings without nilpotent elements, Proc. Amer. Math. Soc. 38 (1973), 381–387. MR 439624, DOI 10.1090/S0002-9939-1973-0439624-8
- Angus Macintyre, Model-completeness for sheaves of structures, Fund. Math. 81 (1973/74), no. 1, 73–89. MR 337592, DOI 10.4064/fm-81-1-73-89
- Gerald E. Sacks, Saturated model theory, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1972. MR 0398817 D. Saracino and V. Weispfenning, Commutative regular rings without prime models, Yale Notes, July 1973.
- Volker Weispfenning, Model-completeness and elimination of quantifiers for subdirect products of structures, J. Algebra 36 (1975), no. 2, 252–277. MR 437339, DOI 10.1016/0021-8693(75)90101-5
Additional Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 211 (1975), 161-170
- MSC: Primary 02H15; Secondary 13L05
- DOI: https://doi.org/10.1090/S0002-9947-1975-0396254-0
- MathSciNet review: 0396254