On coverings and hyperalgebras of affine algebraic groups
HTML articles powered by AMS MathViewer
- by Mitsuhiro Takeuchi
- Trans. Amer. Math. Soc. 211 (1975), 249-275
- DOI: https://doi.org/10.1090/S0002-9947-1975-0429928-3
- PDF | Request permission
Abstract:
Over an algebraically closed field of characteristic zero, the universal group covering of a connected affine algebraic group, if such exists, can be constructed canonically from its Lie algebra only. In particular the isomorphism classes of simply connected affine algebraic groups are in 1-1 correspondence with the isomorphism classes of finite dimensional Lie algebras of some sort. We shall consider the counterpart of these results (due to Hochschild) in case of a positive characteristic, replacing the Lie algebra by the “hyperalgebra". We show that the universal group covering of a connected affine algebraic group scheme can be constructed canonically from its hyperalgebra only and hence, in particular, that the category of simply connected affine algebraic group schemes is equivalent to a subcategory of the category of hyperalgebras of finite type which contains all the semisimple hyperalgebras.References
- Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
- Mitsuhiro Takeuchi, Tangent coalgebras and hyperalgebras. I, Jpn. J. Math. 42 (1974), 1–143. MR 389896, DOI 10.4099/jjm1924.42.0_{1} —, Tangent coalgebras and hyperalgebras. II, Mem. Amer. Math. Soc (submitted).
- Jean Dieudonné, Lie groups and Lie hyperalgebras over a field of characteristic $p>0$. VI, Amer. J. Math. 79 (1957), 331–388. MR 94413, DOI 10.2307/2372686
- G. Hochschild, Algebraic groups and Hopf algebras, Illinois J. Math. 14 (1970), 52–65. MR 257088, DOI 10.1215/ijm/1256053299 N. Iwahori, The theory of Lie algebras and Chevalley groups, Seminar Notes 12, 13, University of Tokyo, Tokyo, 1965. (Japanese)
- Masayoshi Miyanishi, Une caractérisation d’un groupe algébrique simplement connexe, Illinois J. Math. 16 (1972), 639–650 (French). MR 309949
- I. Satake, Classification theory of semi-simple algebraic groups, Lecture Notes in Pure and Applied Mathematics, vol. 3, Marcel Dekker, Inc., New York, 1971. With an appendix by M. Sugiura; Notes prepared by Doris Schattschneider. MR 0316588
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 0252485
- Mitsuhiro Takeuchi, A correspondence between Hopf ideals and sub-Hopf algebras, Manuscripta Math. 7 (1972), 251–270. MR 321963, DOI 10.1007/BF01579722
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 211 (1975), 249-275
- MSC: Primary 14L15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0429928-3
- MathSciNet review: 0429928