Commuting and topological densities and liftings
HTML articles powered by AMS MathViewer
- by Trevor J. McMinn
- Trans. Amer. Math. Soc. 211 (1975), 1-22
- DOI: https://doi.org/10.1090/S0002-9947-1975-0432845-6
- PDF | Request permission
Abstract:
For fairly general conditions on a measure space, a group of bijections on the space and a topology on the space, densities and lifttings commuting with members of the group and with topologies finer than the given topology are obtained.References
- Klaus Bichteler, On the strong lifting property, Illinois J. Math. 16 (1972), 370–380. MR 296250
- Klaus Bichteler, An existence theorem for strong liftings, J. Math. Anal. Appl. 33 (1971), 20–22. MR 269805, DOI 10.1016/0022-247X(71)90177-6
- Klaus Bichteler, A reduction of the strong lifting problem, Invent. Math. 11 (1970), 159–162. MR 285688, DOI 10.1007/BF01404609
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- P. A. Fillmore, On topology induced by measure, Proc. Amer. Math. Soc. 17 (1966), 854–857. MR 197667, DOI 10.1090/S0002-9939-1966-0197667-2
- Jacques Gapaillard, Relèvements sur une algèbre de parties d’un ensemble, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A1798–A1800 (French). MR 297962
- A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48, Springer-Verlag New York, Inc., New York, 1969. MR 0276438, DOI 10.1007/978-3-642-88507-5
- A. Ionescu Tulcea and C. Ionescu Tulcea, Liftings for abstract valued functions and separable stochastic processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 114–118. MR 277026, DOI 10.1007/BF00537015
- C. Ionescu Tulcea, On liftings and derivation bases, J. Math. Anal. Appl. 35 (1971), 449–466. MR 281869, DOI 10.1016/0022-247X(71)90229-0
- C. Ionescu Tulcea, Liftings for functions with values in a completely regular space, Math. Ann. 187 (1970), 200–206. MR 267071, DOI 10.1007/BF01432253
- C. Ionescu Tulcea, On the lifting property and disintegration of measures, Bull. Amer. Math. Soc. 71 (1965), 829–842. MR 200712, DOI 10.1090/S0002-9904-1965-11407-0
- H. Kenyon and A. P. Morse, Runs, Pacific J. Math. 8 (1958), 811–824. MR 104210, DOI 10.2140/pjm.1958.8.811
- Dorothy Maharam, On a theorem of von Neumann, Proc. Amer. Math. Soc. 9 (1958), 987–994. MR 105479, DOI 10.1090/S0002-9939-1958-0105479-6
- R. Maher, A note on strong liftings, J. Math. Anal. Appl. 29 (1970), 633–639. MR 281870, DOI 10.1016/0022-247X(70)90071-5
- Anthony P. Morse, The role of internal families in measure theory, Bull. Amer. Math. Soc. 50 (1944), 723–728. MR 11107, DOI 10.1090/S0002-9904-1944-08223-2 J. von Neumann, Algebräsche Repräsentanten der Funktionen bis auf eine Menge von Masse null, J. Reine Angew. Math. 165 (1931), 109-115.
- Maurice Sion, A theory of semigroup valued measures, Lecture Notes in Mathematics, Vol. 355, Springer-Verlag, Berlin-New York, 1973. MR 0450503, DOI 10.1007/BFb0060133
- Maurice Sion, Introduction to the methods of real analysis, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1968. MR 0229758
- Tim Traynor, An elementary proof of the lifting theorem, Pacific J. Math. 53 (1974), 267–272. MR 367659, DOI 10.2140/pjm.1974.53.267
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 211 (1975), 1-22
- MSC: Primary 28A15; Secondary 46G15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0432845-6
- MathSciNet review: 0432845