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BY
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ABSTRACT.   A generalized alternative ring /is a nonassociative ring R in

which the identities (wx, y, z) + (w, x, (y, z)) — w(x, y, z) — (w, y, z)x; ({w, x),y,z)

+ (w, x, yz)—y(w,x, z) — (w, x, y)z;and (x, x, x)are identically zero. Let A be a

finite-dimensional algebra of this type over a field F of characteristic ^2,3. Then

it is established that (1) A cannot be a nodal algebra, and (2) the standard Wedder-

burn principal theorem is valid for A.

1. Preliminaries. Let F be a nonassociative ring. For x, y, z in F we denote

by (x, y, z) the associator (x, y, z) = ixy)z — x(yz) and by (x, y) the commutator

(x,jO = x;>-.yx.

In [3] Kleinfeld has defined a generalized alternative ring / to be a nonassocia-

tive ring F such that for all w, x,y, zinR the following identities are satisfied:

(1) (wx, y, z) + (w, x, 0, z)) = w(x, y, z) + (w, y, z)x,

(2) ((w, x), y, z) + (w, x, yz) =yiw, x, z) + (w, x, y)z,

(3) (x, x, x) = 0.

In particular, these identities are satisfied by any alternative ring, that is any ring

which satisfies the identities (x, x, y) = 0 = iy, x, x). Conversely, from [3] and [8]

it is known that if F is a ring of this type with characteristic =£2,3, then F is alter-

native if F is prime and contains an idempotent e i= 1. Also, from [3] we have that

F is alternative if whenever x, y, z are contained in a subring of F generated by two

elements and (x, y, z)2 = 0, then (x, y, z) = 0.

Throughout this work we shall assume A to be a finite-dimensional generalized

alternative algebra/over a field F of characteristic ^2,3. We note that from [9] it

is then known that if A is a nilalgebra, A is nilpotent.

In addition to the above defining identities, we shall also need to make use of

the foUowing:

(4) (w, xy, z) - iw, x, zy) + (w, x, y)z - (w, y, z)x - 0,

(5) iw, xy, z) - ixw, y, z) + w(x, y, z) -yiw, x, z) = 0,
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140 H. F. SMITH

(6) (x, x, yz) = yix, x, z) + (x, x, y)z,

(7) (x2, x, y) = (x, x2, y) - 2(x, x, yx).

Identities (4), (5) and (6) are established in [8], while (7) can be found in [9].

2. Nodal algebras. If A is an algebra over a field F of characteristic =£ 2,

we can construct a new algebra A+ over F, where the vector space operations

are the same as those in A but multiplication is defined by the (commutative)

product x ° y = lAixy + yx). A Jordan algebra is a commutative algebra which

satisfies the identity (x, y, x2) = 0.

Lemma 1. If A is a generalized alternative algebra I over a field F of char-

acteristic ^ 2, 3, then A+ is a Jordan algebra.

Proof. From [3] we have (x, y, x2) = 2(x, y, x)x, 2x(x, y, x) =

(x2, y, x), and (x, y, x)x = x(x, y, x), whence

(8) ix,y,x2) = ix2,y,x).

Next letting z = y = x in (4) we obtain (w, x2, x) — (w, x, x2) = 0, whence

(9) (y,x2,x) = (y,x,x2).

Now using (7), (8), and (9) we have

0 = (x, x2, y) - (x2, x, y) + (x, y, x2) - (x2, y, x) + (y,x,x2)- (y, x2, x)

= (xy)x2 + (yx)x2 + x2(xy) + x2(yx) -xiyx2) -x(x2.y) - (yx2)x - (x2y)x

= 4((x °y)°x2—x°(y° x2)).

Thus (x, y, x2) = 0 in A+, and so A+ is a Jordan algebra.

Let A be a finite-dimensional power-associative algebra with unity element

over a field F. If every x in A is of the form x = cd + n with a in F and n nil-

potent, and if the set N of nilpotent elements of A does not form a subalgebra of

A, then A is called a nodal algebra.

Let A be a nodal generalized alternative algebra /. Since the Jordan algebra

A+ cannot be a nodal algebra [2], A+ = Fl + AT*" where A'"'" is a nilideal of

A + ; that is A = Fl + N where N is a subspace of .4 consisting of all nilpotent

elements of A, and x ° v is in N for all x in A'', y in A. We denote by N o N

the subspace of A7, generated by all elements of the form x o y with x, y in Af.

Lemma 2. 7/^1 is a nodal generalized alternative algebra I over a field F of

characteristic ̂ 2, 3, then Í7V o N)N Ç N and NiN <>N)ÇN.

Proof. From [3] we have (x, y, x)2 = 0, whence (x, y, x) is in N for all

x, y in A. Continuing now as in the proof of Lemma 2 in [1], we have

(x » y)x = xhix, y, x) + iyx) ° x is in N for x in Af. Linearization of (x o y)x
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THE WEDDERBURN PRINCIPAL THEOREM 141

then gives (x ° y)z + (z o y)x is in N for x, z in N. Taking z =y, this in turn yields

(x o y)y +y2x is in N, whence y2x is in N for x, y in N. Linearization of y2x now

gives 2iy ° z)x, hence iy ° z)x is in N for x, y, z in N. Since this implies xiy ° z) =

2((y o z) ° x) — (j> o z)x is also in A7, we have shown (A7 « N)N and MAf o AO are

contained in N.

Lemma 3. If A is a nodal generalized alternative algebra I over a field F of

characteristic ±2,3, then (x, x, y) and iy, x, x) are in N for all x, y in A.

Proof. It is clear we may assume that x, y are in N. Let xy = al + n.

Then (7) gives 2(x, x,yx) = (x2,x,y) = x3y -x2ixy) = x3y -ax2 —

x2n is in N ° N + (N ° N)N, which by Lemmas 1 and 2 is contained in N. Thus

(x, x, yx) is in N. Next from (6) and (3) we have (x, x, y ° x) = x ° (x, x, y) is

in N, whence (x, x, xy) is also inN. If we take y = x in (6) and apply (3), we

obtain

(10) (x, x, xy) = x(x, x, y).

Then using (10) we have x(xix,x,y)) =x(x, x, xy) = x(x, x, al + ri) = x(x, x, «)

= (x, x, xw) is in N. Hence (x, x, (x, x, 7)) = x2(x, x, y) — x(x(x, x, j0) is in N,

since by Lemmas 1 and 2 x2(x, x, y) is in A7. Set (x, x, y) = u. Then using (6)

we have N contains

(x, x, (x, x, y2)) = 2(x, x.you)

= 2iy o (x, x, u) + u o (x, x, y)) = 2(y o (x, x, u) + u2).

This implies 2m2 , hence u2, is in N, since 2y ° (x, x, u) is in N by Lemma

1. Thus (x, x, y) = u is itself in N.  Lastly, Unearization of (3) gives (y, x, x) =

-(x, y, x) - (x, x, y) is in N, since as in the proof of Lemma 2 we know (x, y, x)

to be in N.

Lemma 4. If A is a nodal generalized alternative algebra I over a field F of

characteristic * 2, 3, then ((N ° N)N)N C N and N((N ° AOAO Ç N.

Proof.   Let x, y, z be in N.   Then from (1) we have (x2, y, z) =

—(x, x, (y, z)) + 2x o (x, y, z), whence (x2, y, z) is in N by Lemmas 1 and 3.

Since x2(yz) is in N by Lemmas 1 and 2, this in turn implies ix2y)z = (x2, y, z)

+ x2iyz) is in N. Linearization of ix2y)z now yields 2((w ° x)y)z, hence

((w o x)y)z, is in N for w, x,y,zin N. Since this implies z((w ° x)y) =

2((w o jc)^) o z — ((w o x)y)z is also in N, we have proven ((N ° N)N)N and

A^íTV o AOAO to be contained in N.

Lemma 5. If A is a nodal generalized alternative algebra I over a field F of

characteristic ¥= 2, 3, then K = N°N+(N<> N)N + ((N ° NyNyN is an ideal of

A contained in N.
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142 H. F. SMITH

Proof. That K is contained in N follows directly from Lemmas 1, 2, and

4. Take x = cd + n in A, k in K. Then kx = ak + kn and xk = ak + rik =

ak + 2« o k — kn. Thus AK and KA are both contained in K + KN, and so to

show K is an ideal of A it is sufficient to show HiN ° N)N)N)N, hence KN, is

contained in K.

Let «, u, w, x, y, z be in N. Then taking w = u ° u, from (2) we obtain

((*(" ° v))y)z + X((« ° v)x)z)

= (xfp ° v))(yz) - iu o v)ixiyz)) +yiiu ° v)ixz)) + (fp ° p)(x.v))z

= (2(x ° fp o u))(yz) - (fp o u)x)(yz)) -(i/o u)fxO>z))

+ i2y o ((U c „)£»)) - ((„ o y)fxz))7) + (fp o ü)(^))z

is in üf. Since

(fxfp o v))y)z +yiiiu ° u)x)z) = (2((x ° (M o u))^)z - (((u o u)x).y)z)

+ (27 ° (ffp » u)x)z) - (((ii ö u)x)z)7),

this gives

(i) ((fp o ü)x)y)z = — (ffp o u)x)z)y mod £.

Now from (1) we obtain ((fp ° u)x).y)z — (ffu ° p).y)z)x = ((« o u)x)(zj) —

(m o v) fxfzy)) + (« o u)((xy)z) — ((u ° u) (yz))x is in K. Using fi) this gives

(ii) Hiu o v)x)y)z s — (((« o u)^)x)z mod K.

Next takings = u o v, from (1) we obtain

Wfxfzfp o I»))) — WÜxiu ° V))Z) — (fw(ll ° U))z)x + (w((ll o v)z))x

= — ((WX)(U o U))Z + (vvx)fzfp o l)))

= -(2((wx) o iu o v))z — (fp o u)(wx))z)

+ (2(2(wx) ° (Z o (|| o y))) - 2(z o iu o u))(wx)

— 2(wx) » (fp ° v)z) + (fp o u)z)(wx))

is in K. Letting w = y this gives

(iii) y(x(z(« o v))) -yiixiu « v))z) - ((yfp ° v))z)x + iyüu ° v)z))x =

0 mod K.

Noting that nk + kn = 2n ° k implies nk^—kn mod N ° N and so that also

NiN o AO, NiNiN o AO), (ATfAf ° A0>V, #((# o AOAO are in £, from (iii) we now

have

0 = .yfxfX" ° v))) - yiixiu ° v))z) - iiyiu ° v))z)x + 0((ii ° v)z))x

= -(x(z(w o u)))_y + (fxfp ° u))z)j; + (((p o v)y)z)x - Hiu o v)z)y)x

= ixiiu ° v)z))y - (ffp ° v)x)z)y + ((fp o v)y)z)x - ((fp ° u)z)^)x

= -(((ti o v)z)x)y — Hiu ° v)x)z)y + (((« o v)y)z)x — (((w ° u)z)y)x mod K.
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THE WEDDERBURN PRINCIPAL THEOREM 143

That is

(iv) — (((« ° v)z)x)y — (((« o v)x)z)y + (((u ° v)y)z)x — (((u ° v)z)y)x = 0 mod F.

Finally, applying (ii) to (iv) we have 0 = (((u ° v)x)z)y — (((u ° v)x)z)y +

(((" ° v)y)z)x + (((« ° v)y)z)x = 2(((« ° v)y)z)x mod F. Thus (((A7 ° N)N)N)N

is contained in F, and so it follows that F is an ideal of A contained in N.

Lemma &   There are no nodal generalized alternative algebras I over fields of

characteristic =£ 2, 3 such that n2 = 0 for each n in N.

Proof. Suppose that A is a nodal generalized alternative algebra / over a field

F of characteristic =£ 2,3 such that n2 = 0 for each n inN. We first note that

for x, j in N we have 0 = (x + j>)2 = xy + yx implies xy = —yx. Let xy = al

+ n = — .yx. Then taking w — x and z = y in (1) we have

0 = ix2y)y -x2y2 -xüxy)y) + x(xy2) - Hxy)y)x + ixy2)x

= -xiixy)y) - Hxy)y)x = -x((al 4- ri)y) - ((al + n)y)x

= — axy — xiny) — ayx — iny)x = —2x ° iny).

Thus

(v) x o (ny) = 0.

Next taking w and y as x, x and z as .y in (1) we have

0 = ((xy)x)y - (xy)(yx) + x(y(yx)) - x((yx)y) - (x2y)y + (x(xy))y

= ((xy)x)y + ixy)ixy) - xiyixy)) + xiixy)y) + ixixy))y

= ((al + n)x)y + (al + ri)2 - x(^(al + ri)) + x((al + n)y) + (x(al + n))y

= axy + inx)y + a21 + 2an + n2 — axy —xiyri) + axy + xiny) + axy + ixn)y

= a21 + 2a« + 2axy + 2xiny) — 3a21 + 4a« + 2x(«y).

Thus

(vi) 3a21 + 4a« + 2x(«.y) = 0.

Now taking w = y and z = x in (2) we have

0 = iixy)y)x - (xy) (yx) + y(x(yx)) + y((yx)x) -yiyx2)- 0(xy))x

■ iixy)y)x + (xy)ixy) -yixixy)) -yiixy)x) - iyixy))x

= ((al + ri)y)x + (al + «)2 - j(x(al + «)) -_K(al + n)x) - (y(al + n))x

- ayx + Qiy)x + a21 + 2a« + n2 — ayx —yixri) — ayx —yinx) — ayx — iyripc

= a21 + 2a« + 2axy + 2(n.y)x = 3a21 + 4a« + 2(«j)x.

Thus

(vü)  3a21 + 4a« + 2iny)x = 0.

Finally, adding (vi) and (vii) and using (v) we obtain 0 = 6a21 + 8a« + 4x ° iny)

= 6a21 + 8a«.  But then 6a2 = 0 implies a = 0, that is xy is in N for every x,y
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144 H. F. SMITH

in N. Since this means the set N of nilpotent elements of A is a subalgebra of A,

A cannot be a nodal algebra.

Theorem 1. There are no nodal generalized alternative algebras I over

fields of characteristic # 2, 3.

Proof. Suppose that A is a nodal generalized alternative algebra / over a

field F of characteristic =£ 2, 3. Then A has a homomorphic image which is a

simple nodal algebra, and so we can assume A itself to be simple. Now by Lemma

5, since the ideal K=N°N+iN° N)N + UN o N)N)N oî A is contained in AT,

it must be zero. In particular, N ° N = 0, and so n2 = 0 for each n in N. But

then, by Lemma 6, A cannot be a nodal algebra.

3. Wedderburn principal theorem.

Lemma 7. Let A be a generalized alternative algebra I. If B is an ideal of

A, then AB2 + B2A + B2 and B* = B3 + AiBB2) + iB2B)A are ideals of A

withB*CB2.

Proof. Take ai vn.A, b- in B for i" = 1, 2; / = 1, 2, 3. Then from (1) we

have ayiby, b2, a2) + ialt b2, a2)bx = iaxblt b2, a2) + (plf bx, ib2, a2)),

whence AiB2A)CAB2 + B2A + B2. Also from (1) we have Q>x, b2, Oy)a2 +

byia2, b2, ax) = ibxa2, b2, ax) + ibx, a2, (Z>2, ax)), whence iB2A)A ÇB2A +

B2. Now using (2), in symmetric fashion one obtains that iAB2)A CAB2 +

B2A + B2 and AiAB2) CAB2 + B2. Thus AB2 + B2A + B2 is an ideal of A.

To show B* is an ideal of A, we first note that from (1) we have

ibyb2, ax, b3) + iby, b2, (a,, b3)) = byib2, ax, b3) + (ft1( ax, b3)b2 or

Hbyb2)ay)b3 is in B3.  Symmetrically from (2) one also has bxiaxib2b3)) is in

B3. Hence

(viii) iB2A)B, BiAB2)ÇB3.

Now (5) gives ayibu b2,b3) = iby, b2ax, b3) - Q>2by, ay, b3)+ bxib2,ay, b3),

and using (viii) this implies AiB2B) ÇB3 + AiBB2) C B*. Symmetrically (4) and

(viii) imply iBB2)A ÇB3+ iB2B)A ÇB*. Thus we have shown AB3,B3AÇB*.

Next, letting z = b2b3, (2) yields aj(a2, bx, b2b3) + (a2, bx, ax)Q>2b3) =

ffa2, by),ay,b2b3) + (a2, bv a1(ô2ô3)), whence using (viii) and that^B3 ÇB*

we have AiAiBB2)) ÇB*. Then using our earlier calculations that AiB2B) ÇB3

+ AiBB2) and AB3 ÇB*, this in turn gives AiAiB2B)) CAB3 + AiAiBB2)) Ç

B*. Still letting z = b2b3, (4) now yields fpj, bv b2b3)a2 = (a1( a2bx, b2b3)

- (a,, a2, ib2b3)bx) + (a,, a2, bx)Q)2b3), whence usingB3A,AB3,AiAiB2B))

QB* we have iAiBB2))A CB*. Thus we have shown AiAiBB2)), iAiBB2))A C

B*. In symmetric fashion using (1) and (5) one also has HB2B)A)A,AiiB2B)A) Ç

B*; and this completes the proof that B* is an ideal of A.
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Finally, from (1) we have (b1b2,b3,ax) + (bx,b2,(b3,ax))=bx(b2,b3,ax) +

(bx,b3,ax)b2 or (B2B)A ÇB2. Symmetrically from (2) we have A(BB2) Ç B2, and

thus F*C52.

For any nonassociative algebra A one can obtain a descending chain of sub-

algebras A{0)2A{l)D • • • DAM D • • • by defining inductively Am = A,

^(j-t-1) _ (4 (0)2   The aigebrav4 js caue(j solvable in case A(n) - 0 for some n.

Let A be a generalized alternative algebra /. If B is any ideal of A, we

define F</; inductively by 5<0> = B, Bu+l> = A(BU))2 + (B{i))2A + (BU))2.

Then by Lemma 7 we obtain a descending chain F<0> Dfi(1> 2 ' ' ' 2#<m> 2

• • • of ideals of A which we caU a Penico sequence. As in [7], we shall caU

B Penico solvable in case there is some m for which F<m> = 0.

Lemma 8. Let A be a generalized alternative algebra I.  IfB is an ideal of

A, then B is solvable if and only if B is Penico solvable.

Proof. If B is Penico solvable, then F is solvable since B^ ÇB{,). To see

that B solvable implies F is Penico solvable, suppose B{ 2 5 c B* C B2 C F(l \ Then,

as in the proof of Theorem 3 in [7], by induction one has F<2ft> Ç B^k\ since

fl<2(*+l)> = (fi<2k>)<2> g(fi<2*>)(1) £ (5(fc))(1) = 5(fc+i)    Hence ]fB ¡s

solvable, then B{2k) Çfi(fc) = 0 for some fc, and F is Penico solvable. Thus to

prove B solvable implies F is Penico solvable, it is sufficient to prove

A((AB2 +B2A +B2)2) + ((AB2 +B2A+B2)2)A + (AB2 +B2A +B2)2 = F<2> CB*.

To do this, since by Lemma 7 B* is itself an ideal of A, it is in turn sufficient to

show (AB2 + B2A + B2)2 CB*.  Now B an ideal of A gives B2B2 ,B2(B2A),

(B2A)B2,B2(AB2), (AB2)B2 ÇB3 C B*. Also, using (viii) from the proof of

Lemma 7, we have (B2A)(B2A), (B2A)(AB2) C (B2A)BCB3 CB* and (AB2\AB2)

ÇBiAB2) Ç F3 ÇB*. Lastly, taking a in A, b, in B, from (1) we obtain

bx(b2, b3,a) + (bx,b3, a)b2 = (bxb2, b3, a) + (bx, b2, (b3, a)), whence again

using (viii) we have B(B2A) CB3 + (B2A)B + (B2F>1 ÇB3 + (B2B)A CB*.

But then (AB2)(B2A) CB(B2A)CB*. We now have shown (AB2 + B2A + B2)2

ÇB*, and so our proof is complete.

Let A be a finite-dimensional generalized alternative algebra / over a field F

of characteristic + 2, 3. We define the radical N of A to be the maximal nilideal

(= solvable = nilpotent [9]) of A, and we caU A semisimple in case N = 0. If,

in addition, A is semisimple over every scalar extension of the base field F, then

A is said to be separable. We note too that A/N, as is the case for any power-

associative algebra, is semisimple.

Theorem 2. Let A be a finite-dimensional generalized alternative algebra I

over a field F of characteristic =£ 2, 3. If A is semisimple, then A has a unity
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146 H. F. SMITH

element and is the direct sum of simple algebras.

Proof.  The proof is the same as that of Theorem 9 in [4].

Theorem 3 (Wedderburn principal theorem). Let A be a finite-di-

mensional generalized alternative algebra I over a field F of characteristic =¡¿=2,3.

If A/N is separable, then A = S + N iyector space direct sum) where S is a sub-

algebra of A such that S — A/N.

Proof. If A has dimension one, then since either N = 0 ox N = A the

theorem is clearly true. We make an induction on the dimension of A and as-

sume the theorem to be true for all algebras of lesser dimension.

Now, as in the proof of Theorem 2.4 in [9], it is possible to make the fol-

lowing standard reductions.  First one may assume N not to properly contain

any ideals of A. Then using Theorem 1.3 in [9] and our Lemma 8, one can re-

duce to the case N2 = 0, and hence to the case F is an algebraically closed field.

Next, using our Theorem 2 and the fact from [3] that Ay and A0 are subalgebras

in the Albert decomposition for A relative to an idempotent e, we can use Theo-

rem 2.1 in [5] to assume A has a unity element and that A/N is simple.  As a

final reduction we note, as in the proof of Theorem 2.2 of [5], that if there ex-

ists a primitive idempotent e such that our theorem is true for the ideal of A

generated by the subspace Ay2 in the Albert decomposition of A, then it is valid

for A as well.

We suppose first that 1 is the only idempotent in A/N. Then since we are

assuming the field F to be algebraically closed, and since by Theorem 1 there

are no nodal generalized alternative algebras / over fields of characteristic =7== 2, 3,

we must have A/N = Fl. Now by Lemma 2.1 in [5],   1 lifts to an idempotent

e in A. But then we have Fe a subalgebra of A such that Fe — A/N, and our

theorem is proven.  Thus we may assume that A/N, hence A, contains an idem-

potent e =?== 1.  Furthermore, since A is finite-dimensional, we can take e to be

primitive. Now by Theorem 1 in [8],/ = fp, e, A) is an ideal of A such that I2 =

0.  Hence, since we are assuming N not to properly contain any ideals of A,

either I = 0 ox I = N.

Suppose that / = 0. Then, as in the proof of the corollary in [8], A has

a Peirce decomposition relative to e. Let H = Al0A0l + Al0 + Aol + A0lAi0.

As in the proof of Theorem 2 in [8], H is an ideal of A.  In particular, H must

be the ideal of A generated by A1/2 =A10+ A0l. Now if// is a proper ideal of A,

then our induction assumption implies that the theorem is true for //. But then our

final reduction applies, and so we may conclude that the theorem is true for .4 itself.

On the other hand, if H = A, then A lx =AX0A0X and A00 = A01A10. Take

Wy, Xy, y¡¡, Zy in Ay for /, / = 0, 1. Then using the fact established in [3] that
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the Peirce subspaces of a generalized alternative algebra / multiply the same as for

an alternative algebra, from (4) we obtain

Oil *tv Woi) = 0*11, *n>oi« zio) + (wii>*n> J'oiKo

-(wn>yovzio)xu =°.

and

(w00. *oo> Wio) " (woo> ̂oo^io' zoi) + (woo> *oo- ̂ io)zoi

- Ko> ^10' zoi)*oo " °-

Hence A xx and A0Q are associative subalgebras of A. But then it foUows from

the proof of Theorem 2 in [8] and the proof of Theorem 3 in [3] that A is an

alternative algebra. Since in this case the theorem is known from [6] to be vaUd

for A, our induction is complete.

We consider now the other possibility, namely I = N, and take fc = (e, e, x)

=£ 0.  For the Albert decomposition of A, we have from [3] that AViA,, A^4.t/i Ç

AYi for i = 0, 1.  In particular, this says that N = (e, e, A) CAVi. Now if F is

the ideal in A generated by the subspace AVl, then H ■ AVl + iAVl)2. To see

this, take x,, y,, z, in A, for f ■ 0, H, 1. Then for i = 0, 1 we have

ixViyVl)z, = (xVl,y,A, z¡) + xyi(yyiz,)

= e**.?* + */, yVl + zi) - c**. y*>yv)

- (x,¿, z,, z,) - (Xy2,z,,ylA) + xV2(yVjz,).

But by Theorem 3 in [3] our assumption that A/N is simple implies A/N is al-

ternative, that is (a, a, b) and (b, a, a) are in N for all a, b in A, so we have

shown that (x^j^z,- is in N + (AVl)2 Ç A,h + (AVi)2. Similarly one has

z,ixViyVl) is in A Vl + iA Vl)2 for  í = 0, 1.  Since the cases for / ■ H are imme-

diate if one writes xViyVi = ax + aVl + a0 with a, in A,, we have established

H = AVl + iAí/2)2 as claimed. Now by Theorem 1 in [8]   Ffc = 0, but from the

proof of that same Theorem 1  efc = ttk i= 0. Hence e is not in H. But then

F is a proper ideal of A, and so by the induction assumption the theorem is true

for H.  Our final reduction now applies to complete the induction and the proof

of the theorem.
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