The Wedderburn principal theorem for generalized alternative algebras. I
HTML articles powered by AMS MathViewer
- by Harry F. Smith
- Trans. Amer. Math. Soc. 212 (1975), 139-148
- DOI: https://doi.org/10.1090/S0002-9947-1975-0376796-4
- PDF | Request permission
Abstract:
A generalized alternative ring I is a nonassociative ring R in which the identities $(wx,y,z) + (w,x,(y,z)) - w(x,y,z) - (w,y,z)x;((w,x),y,z) + (w,x,yz) - y(w,x,z) - (w,x,y)z$; and $(x,x,x)$ are identically zero. Let A be a finite-dimensional algebra of this type over a field F of characteristic $\ne 2,3$. Then it is established that (1) A cannot be a nodal algebra, and (2) the standard Wedderburn principal theorem is valid for A.References
- John D. Arrison and Michael Rich, On nearly commutative degree one algebras, Pacific J. Math. 35 (1970), 533–536. MR 274535
- N. Jacobson, A theorem on the structure of Jordan algebras, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 140–147. MR 75934, DOI 10.1073/pnas.42.3.140
- Erwin Kleinfeld, Generalization of alternative rings. I, II, J. Algebra 18 (1971), 304–325; ibid. 18 (1971), 326–339. MR 0274545, DOI 10.1016/0021-8693(71)90063-9
- E. Kleinfeld, F. Kosier, J. Marshall Osborn, and D. Rodabaugh, The structure of associator dependent rings, Trans. Amer. Math. Soc. 110 (1964), 473–483. MR 157993, DOI 10.1090/S0002-9947-1964-0157993-2
- D. J. Rodabaugh, On the Wedderburn principal theorem, Trans. Amer. Math. Soc. 138 (1969), 343–361. MR 330240, DOI 10.1090/S0002-9947-1969-0330240-9
- R. D. Schafer, The Wedderburn principal theorem for alternative algebras, Bull. Amer. Math. Soc. 55 (1949), 604–614. MR 29895, DOI 10.1090/S0002-9904-1949-09259-5
- R. D. Schafer, Standard algebras, Pacific J. Math. 29 (1969), 203–223. MR 244332
- Harry F. Smith, Prime generalized alternative rings $I$ with nontrivial idempotent, Proc. Amer. Math. Soc. 39 (1973), 242–246. MR 313348, DOI 10.1090/S0002-9939-1973-0313348-X
- Harry F. Smith, The Wedderburn principal theorem for a generalization of alternative algebras, Trans. Amer. Math. Soc. 198 (1974), 139–154. MR 352187, DOI 10.1090/S0002-9947-1974-0352187-6
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 212 (1975), 139-148
- MSC: Primary 17D05
- DOI: https://doi.org/10.1090/S0002-9947-1975-0376796-4
- MathSciNet review: 0376796