Smooth locally convex spaces
HTML articles powered by AMS MathViewer
- by John Lloyd
- Trans. Amer. Math. Soc. 212 (1975), 383-392
- DOI: https://doi.org/10.1090/S0002-9947-1975-0380868-8
- PDF | Request permission
Abstract:
The main theorem is Let E be a separable (real) Fréchet space with a nonseparable strong dual. Then E is not strongly $D_F^1$-smooth. It follows that if X is uncountable, locally compact, $\sigma$-compact, metric space, then $C(X)$ (with the topology of compact convergence) does not have a class of seminorms which generate its topology and are Fréchet differentiable (away from their null-spaces).References
- E. Asplund and R. T. Rockafellar, Gradients of convex functions, Trans. Amer. Math. Soc. 139 (1969), 443–467. MR 240621, DOI 10.1090/S0002-9947-1969-0240621-X
- V. I. Averbuh and O. G. Smoljanov, Differentiation theory in linear topological spaces, Uspehi Mat. Nauk 22 (1967), no. 6 (138), 201–260 (Russian). MR 0223886
- V. I. Averbuh and O. G. Smoljanov, Different definitions of derivative in linear topological spaces, Uspehi Mat. Nauk 23 (1968), no. 4 (142), 67–116 (Russian). MR 0246118
- Robert Bonic and John Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877–898. MR 0198492
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. 10-I, Academic Press, New York-London, 1969. Enlarged and corrected printing. MR 0349288 G. Köthe, Topologische linear Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1960; English transl., Die Grundlehren der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 24 #A411; 40 #1750.
- E. B. Leach and J. H. M. Whitfield, Differentiable functions and rough norms on Banach spaces, Proc. Amer. Math. Soc. 33 (1972), 120–126. MR 293394, DOI 10.1090/S0002-9939-1972-0293394-4
- Michel Leduc, Densité de certaines familles d’hyperplans tangents, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A326–A328 (French). MR 276733 —, Jauges différentiables et partitions de l’unité, Séminaire Choquet, 1965/65, no. 12.
- John W. Lloyd, Inductive and projective limits of smooth topological vector spaces, Bull. Austral. Math. Soc. 6 (1972), 227–240. MR 295031, DOI 10.1017/S0004972700044452
- John Lloyd, Smooth partitions of unity on manifolds, Trans. Amer. Math. Soc. 187 (1974), 249–259. MR 375374, DOI 10.1090/S0002-9947-1974-0375374-X —, Two topics in the differential calculus on topological linear spaces, Ph.D. Dissertation at the Australian National University.
- Jean-Paul Penot, Calcul différentiel dans les espaces vectoriels topologiques, Studia Math. 47 (1973), 1–23 (French). MR 336334, DOI 10.4064/sm-47-1-1-23
- R. R. Phelps, Support cones and their generalizations, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 393–401. MR 0154093
- Guillermo Restrepo, Differentiable norms in Banach spaces, Bull. Amer. Math. Soc. 70 (1964), 413–414. MR 161129, DOI 10.1090/S0002-9904-1964-11121-6
- M. Ĭ. Kadec′, Conditions for the differentiability of a norm in a Banach space, Uspehi Mat. Nauk 20 (1965), no. 3 (123), 183–187 (Russian). MR 0185416
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 212 (1975), 383-392
- MSC: Primary 58C20; Secondary 46A05
- DOI: https://doi.org/10.1090/S0002-9947-1975-0380868-8
- MathSciNet review: 0380868