Integration of functions with values in locally convex Suslin spaces
HTML articles powered by AMS MathViewer
- by G. Erik F. Thomas
- Trans. Amer. Math. Soc. 212 (1975), 61-81
- DOI: https://doi.org/10.1090/S0002-9947-1975-0385067-1
- PDF | Request permission
Abstract:
The main purpose of the paper is to give some easily applicable criteria for summability of vector valued functions with respect to scalar measures. One of these is the following: If E is a quasi-complete locally convex Suslin space (e.g. a separable Banach or Fréchet space), $H \subset E’$ is any total subset, and f is an E-valued function which is Pettis summable relative to the ultra weak topology $\sigma (E,H)$. f is actually Pettis summable for the given topology. (Thus any E-valued function for which the integrals over measurable subsets can be reasonably defined as elements of E is Pettis summable.) A class of “totally summable” functions, generalising the Bochner integrable functions, is introduced. For these Fubini’s theorem, in the case of a product measure, and the differentiation theorem, in the case of Lebesgue measure, are valid. It is shown that weakly summable functions with values in the spaces $D,E,S,D’,E’,S’$, and other conuclear spaces, are ipso facto totally summable.References
- Garrett Birkhoff, Integration of functions with values in a Banach space, Trans. Amer. Math. Soc. 38 (1935), no. 2, 357–378. MR 1501815, DOI 10.1090/S0002-9947-1935-1501815-3 S. Bochner, Integration von Funktionen, derer Werte die Elemente eines Vectorräumes sind, Fund. Math 20 (1938), 262-276.
- N. Bourbaki, Eléments de mathématique. XVIII. Première partie: Les structures fondamentales de l’analyse. Livre V: Espaces vectoriels topologiques. Chapitre III: Espaces d’applications linéaires continues. Chapitre IV: La dualité dans les espaces vectoriels topologiques. Chapitre V: Espaces hilbertiens, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1229, Hermann & Cie, Paris, 1955 (French). MR 0077882 —, Eléments de mathématique. XXV. Part 1: Les structures fondamentales de l’analyse. Livre VI: Intégration. Chap. 6, Actualités Sci. Indust., no. 1281, Hermann, Paris, 1959. MR 23 #A2033.
- Jens Peter Reus Christensen, Borel structures and a topological zero-one law, Math. Scand. 29 (1971), 245–255 (1972). MR 313467, DOI 10.7146/math.scand.a-11050
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Lawrence M. Graves, Riemann integration and Taylor’s theorem in general analysis, Trans. Amer. Math. Soc. 29 (1927), no. 1, 163–177. MR 1501382, DOI 10.1090/S0002-9947-1927-1501382-X
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- T. H. Hildebrandt, Integration in abstract spaces, Bull. Amer. Math. Soc. 59 (1953), 111–139. MR 53191, DOI 10.1090/S0002-9904-1953-09694-X
- B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), no. 2, 277–304. MR 1501970, DOI 10.1090/S0002-9947-1938-1501970-8
- Albrecht Pietsch, Nukleare lokalkonvexe Räume, Schriftenreihe Inst. Math. Deutsch. Akad. Wiss. Berlin, Reihe A, Reine Mathematik, Heft 1, Akademie-Verlag, Berlin, 1965 (German). MR 0181888
- Laurent Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Tata Institute of Fundamental Research Studies in Mathematics, No. 6, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1973. MR 0426084 G. E. F. Thomas, The Lebesgue-Nikodym theorem for vector valued Radon measures, Mem. Amer. Math. Soc. No. 139 (1974).
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 212 (1975), 61-81
- MSC: Primary 28A45
- DOI: https://doi.org/10.1090/S0002-9947-1975-0385067-1
- MathSciNet review: 0385067