Minimal complementary sets
HTML articles powered by AMS MathViewer
- by Gerald Weinstein
- Trans. Amer. Math. Soc. 212 (1975), 131-137
- DOI: https://doi.org/10.1090/S0002-9947-1975-0399023-0
- PDF | Request permission
Abstract:
Let G be a group on which a measure m is defined. If $A,B \subset G$ we define $A \oplus B = C = \{ c|c = a + b,a \in A,b \in B\}$. By ${A_k} \subset G$ we denote a subset of G consisting of k elements. Given ${A_k}$ we define $s({A_k}) = \inf m\{ B|B \subset G,{A_k} \oplus B = G\}$ and ${c_k} = {\sup _{{A_k} \subset G}}s({A_k})$. Theorems 1, 2, and 3 deal with the problem of determining ${c_k}$. In the dual problem we are given B, $m(B) > 0$, and required to find minimal A such that $A \oplus B = G$ or, sometimes, $m(A \oplus B) = m(G)$. Theorems 5 and 6 deal with this problem.References
- Paul Erdős, Some results on additive number theory, Proc. Amer. Math. Soc. 5 (1954), 847–853. MR 64798, DOI 10.1090/S0002-9939-1954-0064798-9
- G. G. Lorentz, On a problem of additive number theory, Proc. Amer. Math. Soc. 5 (1954), 838–841. MR 63389, DOI 10.1090/S0002-9939-1954-0063389-3
- D. J. Newman, Complements of finite sets of integers, Michigan Math. J. 14 (1967), 481–486. MR 218324 P. Erdös, Private communication.
- G. Weinstein, Some covering and packing results in number theory, J. Number Theory 8 (1976), no. 2, 193–205. MR 435022, DOI 10.1016/0022-314X(76)90101-3
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 212 (1975), 131-137
- MSC: Primary 10J20
- DOI: https://doi.org/10.1090/S0002-9947-1975-0399023-0
- MathSciNet review: 0399023