Singularity subschemes and generic projections
HTML articles powered by AMS MathViewer
- by Joel Roberts
- Trans. Amer. Math. Soc. 212 (1975), 229-268
- DOI: https://doi.org/10.1090/S0002-9947-1975-0422274-3
- PDF | Request permission
Abstract:
Corresponding to a morphism $f:V \to W$ of algebraic varieties (such that $\dim (V) \leqslant \dim (W)$), we construct a family of subschemes $S_1^{(q)}(f) \subset V$. When V and W are nonsingular, the $S_1^{(q)},q \geqslant 1$, induce a filtration of the set of closed points $x \in V$ such that the tangent space map $d{f_x}:T{(V)_x} \to T{(W)_{f(x)}}$ has rank $= \dim (V) - 1$. We prove that if V is a suitably embedded nonsingular projective variety and $\pi :V \to {{\mathbf {P}}^m}$ is a generic projection, then the $S_1^{(q)}(f)$ and certain fibre products of several of the $S_1^{(q)}(f)$ are either empty or smooth and of the smallest possible dimension, except in cases where $q + 1$ is divisible by the characteristic of the ground field. We apply this result to describe explicitly the ring homomorphisms ${\pi ^\ast }:{\hat {\mathcal {O}}_{{{\mathbf {P}}^m}\pi (x)}} \to {\hat {\mathcal {O}}_{V,x}}$ and (when $m \geqslant r + 1$) to study the local structure of the image $Vâ = \pi (V) \subset {{\mathbf {P}}^m}$.References
- J. M. Boardman, Singularities of differentiable maps, Inst. Hautes Ătudes Sci. Publ. Math. 33 (1967), 21â57. MR 231390
- J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188â204. MR 142592, DOI 10.1098/rspa.1962.0170 H. Fitting, Die Determinantenideale eines Moduls, Jber. Deutsch. Math.-Verein. 46 (1936), 195-228. A. Grothendieck, ĂlĂ©ments de gĂ©omĂ©trie algĂ©brique. IV. Ătude locale des schĂ©mas et des morphismes de schĂ©mas, 4e partie,RĂ©digĂ©s avec la collaboration de J. DieudonnĂ©, Inst. Hautes Ătudes Sci. Publ. Math. No. 32 (1967). MR 39 #220.
- Harold I. Levine, The singularities, $S_{1}{}^{q}$, Illinois J. Math. 8 (1964), 152â168. MR 159343
- John N. Mather, Generic projections, Ann. of Math. (2) 98 (1973), 226â245. MR 362393, DOI 10.2307/1970783
- Bernard Morin, Formes canoniques des singularitĂ©s dâune application diffĂ©rentiable, C. R. Acad. Sci. Paris 260 (1965), 5662â5665 (French). MR 180982
- K. R. Mount and O. E. Villamayor, An algebraic construction of the generic singularities of Boardman-Thom, Inst. Hautes Ătudes Sci. Publ. Math. 43 (1974), 205â244. MR 348788
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- D. G. Northcott, Some remarks on the theory of ideals defined by matrices, Quart. J. Math. Oxford Ser. (2) 14 (1963), 193â204. MR 151482, DOI 10.1093/qmath/14.1.193
- Joel Roberts, Generic projections of algebraic varieties, Amer. J. Math. 93 (1971), 191â214. MR 277530, DOI 10.2307/2373457
- Joel Roberts, The variation of singular cycles in an algebraic family of morphisms, Trans. Amer. Math. Soc. 168 (1972), 153â164. MR 306199, DOI 10.1090/S0002-9947-1972-0306199-7
- Joel Roberts, Singularity subschemes and generic projections, Bull. Amer. Math. Soc. 78 (1972), 706â708. MR 301015, DOI 10.1090/S0002-9904-1972-12993-8 â, Generic coverings of ${P^r}$ when ${\text {char}}(k) > 0$, Notices Amer. Math. Soc. 20 (1973), A-383. Abstract #704-A5.
- Satoshi Suzuki, Differentials of commutative rings, Queenâs Papers in Pure and Applied Mathematics, No. 29, Queenâs University, Kingston, Ont., 1971. MR 0376645
- R. Thom, Les singularitĂ©s des applications diffĂ©rentiables, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 43â87 (French). MR 87149
- Hassler Whitney, Singularities of mappings of Euclidean spaces, Symposium internacional de topologĂa algebraica International symposium on algebraic topology, Universidad Nacional AutĂłnoma de MĂ©xico and UNESCO, Mexico City, 1958, pp. 285â301. MR 0098418
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 212 (1975), 229-268
- MSC: Primary 14E25; Secondary 14N05, 14B05
- DOI: https://doi.org/10.1090/S0002-9947-1975-0422274-3
- MathSciNet review: 0422274