Inequalities for a complex matrix whose real part is positive definite
HTML articles powered by AMS MathViewer
- by Charles R. Johnson
- Trans. Amer. Math. Soc. 212 (1975), 149-154
- DOI: https://doi.org/10.1090/S0002-9947-1975-0424851-2
- PDF | Request permission
Abstract:
Denote the real part of $A \in {M_n}(C)$ by $H(A) = 1/2(A + {A^\ast })$. We provide dual inequalities relating $H({A^{ - 1}})$ and $H{(A)^{ - 1}}$ and an identity between two functions of A when A satisfies $H(A) > 0$. As an application we give an inequality (for matrices A satisfying $H(A) > 0$) which generalizes Hadamardโs determinantal inequality for positive definite matrices.References
- C. R. DePrima and C. R. Johnson, The range of $A^{-1}A^{\ast }$ in $\textrm {GL}(n,\,C)$, Linear Algebra Appl. 9 (1974), 209โ222. MR 361862, DOI 10.1016/0024-3795(74)90039-1
- Ky Fan, Generalized Cayley transforms and strictly dissipative matrices, Linear Algebra Appl. 5 (1972), 155โ172. MR 296084, DOI 10.1016/0024-3795(72)90025-0
- Ky Fan, On real matrices with positive definite symmetric component, Linear and Multilinear Algebra 1 (1973), no.ย 1, 1โ4. MR 347857, DOI 10.1080/03081087308817001
- Charles R. Johnson, An inequality for matrices whose symmetric part is positive definite, Linear Algebra Appl. 6 (1973), 13โ18. MR 311689, DOI 10.1016/0024-3795(73)90003-7
- A. M. Ostrowski and Olga Taussky, On the variation of the determinant of a positive definite matrix, Nederl. Akad. Wetensch. Proc. Ser. A. 54 = Indagationes Math. 13 (1951), 383โ385. MR 0047597
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 212 (1975), 149-154
- MSC: Primary 15A45
- DOI: https://doi.org/10.1090/S0002-9947-1975-0424851-2
- MathSciNet review: 0424851