Heegaard splittings of branched coverings of $S^{3}$
HTML articles powered by AMS MathViewer
- by Joan S. Birman and Hugh M. Hilden
- Trans. Amer. Math. Soc. 213 (1975), 315-352
- DOI: https://doi.org/10.1090/S0002-9947-1975-0380765-8
- PDF | Request permission
Abstract:
This paper concerns itself with the relationship between two seemingly different methods for representing a closed, orientable 3-manifold: on the one hand as a Heegaard splitting, and on the other hand as a branched covering of the 3-sphere. The ability to pass back and forth between these two representations will be applied in several different ways: 1. It will be established that there is an effective algorithm to decide whether a 3-manifold of Heegaard genus 2 is a 3-sphere. 2. We will show that the natural map from 6-plat representations of knots and links to genus 2 closed oriented 3-manifolds is injective and surjective. This relates the question of whether or not Heegaard splittings of closed, oriented 3-manifolds are “unique” to the question of whether plat representations of knots and links are “unique". 3. We will give a counterexample to a conjecture (unpublished) of W. Haken, which would have implied that ${S^3}$ could be identified (in the class of all simply-connected 3-manifolds) by the property that certain canonical presentations for ${\pi _1}{S^3}$ are always “nice". The final section of the paper studies a special class of genus 2 Heegaard splittings: the 2-fold covers of ${S^3}$ which are branched over closed 3-braids. It is established that no counterexamples to the “genus 2 Poincaré conjecture” occur in this class of 3-manifolds.References
- James W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), no. 8, 370–372. MR 1560318, DOI 10.1090/S0002-9904-1920-03319-7 —, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 93-95. E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47-72.
- E. Artin, Theory of braids, Ann. of Math. (2) 48 (1947), 101–126. MR 19087, DOI 10.2307/1969218
- Joan S. Birman, Plat presentations for link groups, Comm. Pure Appl. Math. 26 (1973), 673–678. Collection of articles dedicated to Wilhelm Magnus. MR 336734, DOI 10.1002/cpa.3160260509
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
- Joan S. Birman and Hugh M. Hilden, On the mapping class groups of closed surfaces as covering spaces, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66, Princeton Univ. Press, Princeton, N.J., 1971, pp. 81–115. MR 0292082
- Joan S. Birman and Hugh M. Hilden, The homeomorphism problem for $S^{3}$, Bull. Amer. Math. Soc. 79 (1973), 1006–1010. MR 319180, DOI 10.1090/S0002-9904-1973-13303-8 W. Burau, Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Sem. Hansischen Univ. 11 (1936), 171-178.
- H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 14, Springer-Verlag, Berlin-Göttingen-New York, 1965. MR 0174618
- M. Dehn, Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), no. 1, 135–206 (German). Das arithmetische Feld auf Flächen. MR 1555438, DOI 10.1007/BF02547712
- R. H. Fox, On the total curvature of some tame knots, Ann. of Math. (2) 52 (1950), 258–260. MR 37510, DOI 10.2307/1969468
- R. H. Fox, Knots and periodic transformations, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 177–182. MR 0140101
- R. Fox and L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119–126. MR 150755, DOI 10.7146/math.scand.a-10518
- C. McA. Gordon and W. Heil, Simply-connected branched coverings of $S^{3}$, Proc. Amer. Math. Soc. 35 (1972), 287–288. MR 296930, DOI 10.1090/S0002-9939-1972-0296930-7
- Wolfgang Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245–375 (German). MR 141106, DOI 10.1007/BF02559591
- W. B. R. Lickorish, A representation of orientable combinatorial $3$-manifolds, Ann. of Math. (2) 76 (1962), 531–540. MR 151948, DOI 10.2307/1970373
- W. B. R. Lickorish, A finite set of generators for the homeotopy group of a $2$-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769–778. MR 171269, DOI 10.1017/s030500410003824x
- Wilhelm Magnus, Über Automorphismen von Fundamentalgruppen berandeter Flächen, Math. Ann. 109 (1934), no. 1, 617–646 (German). MR 1512913, DOI 10.1007/BF01449158
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1966. MR 0207802
- Wilhelm Magnus and Ada Peluso, On knot groups, Comm. Pure Appl. Math. 20 (1967), 749–770. MR 222880, DOI 10.1002/cpa.3160200407
- William S. Massey, Algebraic topology: An introduction, Harcourt, Brace & World, Inc., New York, 1967. MR 0211390
- J. W. Milnor, On the total curvature of knots, Ann. of Math. (2) 52 (1950), 248–257. MR 37509, DOI 10.2307/1969467
- José M. Montesinos, $3$-variétes qui ne sont pas des revêtements cycliques ramifiés sur $S^{3}$, Proc. Amer. Math. Soc. 47 (1975), 495–500 (French, with English summary). MR 353293, DOI 10.1090/S0002-9939-1975-0353293-9 —, Surgery of links for double branched covers of ${S^3}$, Ann. of Math. Studies, no. 184, Princeton Univ. Press, Princeton, N. J., 1975.
- Kunio Murasugi, On closed $3$-braids, Memoirs of the American Mathematical Society, No. 151, American Mathematical Society, Providence, R.I., 1974. MR 0356023
- C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1–26. MR 90053, DOI 10.2307/1970113
- C. D. Papakyriakopoulos, Some problems on $3$-dimensional manifolds, Bull. Amer. Math. Soc. 64 (1958), 317–335. MR 102814, DOI 10.1090/S0002-9904-1958-10222-0
- Kurt Reidemeister, Knoten und Geflechte, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1960 (1960), 105–115 (German). MR 111048
- Horst Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956), 133–170 (German). MR 82104, DOI 10.1007/BF01473875
- Wolfgang Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245–375 (German). MR 141106, DOI 10.1007/BF02559591
- O. Ja. Viro, Links, two-sheeted branching coverings and braids, Mat. Sb. (N.S.) 87(129) (1972), 216–228 (Russian). MR 0298649
- Friedhelm Waldhausen, Heegaard-Zerlegungen der $3$-Sphäre, Topology 7 (1968), 195–203 (German). MR 227992, DOI 10.1016/0040-9383(68)90027-X
- Friedhelm Waldhausen, Über Involutionen der $3$-Sphäre, Topology 8 (1969), 81–91 (German). MR 236916, DOI 10.1016/0040-9383(69)90033-0
- R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971), 217–231. MR 278287, DOI 10.1090/S0002-9947-1971-0278287-4
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 213 (1975), 315-352
- MSC: Primary 55A10
- DOI: https://doi.org/10.1090/S0002-9947-1975-0380765-8
- MathSciNet review: 0380765