On Dedekind’s problem: the number of isotone Boolean functions. II
HTML articles powered by AMS MathViewer
- by D. Kleitman and G. Markowsky
- Trans. Amer. Math. Soc. 213 (1975), 373-390
- DOI: https://doi.org/10.1090/S0002-9947-1975-0382107-0
- PDF | Request permission
Abstract:
It is shown that $\psi (n)$, the size of the free distributive lattice on n generators (which is the number of isotone Boolean functions on subsets of an n element set), satisfies \[ \psi (n) \leqslant {2^{(1 + O(\log \;n/n))\left ( {\begin {array}{*{20}{c}} n \\ {[n/2]} \\ \end {array} } \right )}}.\] This result is an improvement by a factor $\sqrt n$ in the 0 term of a previous result of Kleitman. In the course of deriving the main result, we analyze thoroughly the techniques used here and earlier by Kleitman, and show that the result in this paper is “best possible” (up to constant) using these techniques.References
- William Feller, An introduction to probability theory and its applications. Vol. I, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1957. 2nd ed. MR 0088081 C. Greene and D. J. Kleitman, Strong versions of Sperner’s theorem, J. Combinatorial Theory (to appear).
- Georges Hansel, Sur le nombre des fonctions booléennes monotones de $n$ variables, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A1088–A1090 (French). MR 224395
- Daniel Kleitman, On Dedekind’s problem: The number of monotone Boolean functions, Proc. Amer. Math. Soc. 21 (1969), 677–682. MR 241334, DOI 10.1090/S0002-9939-1969-0241334-6
- Donald E. Knuth, The asymptotic number of geometries, J. Combinatorial Theory Ser. A 16 (1974), 398–400. MR 335312, DOI 10.1016/0097-3165(74)90063-6 G. Markowsky, Combinatorial aspects of lattice theory with applications to the enumeration of free distributive lattices, Ph. D. Thesis, Harvard University, 1973.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 213 (1975), 373-390
- MSC: Primary 06A35; Secondary 05A15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0382107-0
- MathSciNet review: 0382107