On a varietal structure of algebras
HTML articles powered by AMS MathViewer
- by R. D. Giri
- Trans. Amer. Math. Soc. 213 (1975), 53-60
- DOI: https://doi.org/10.1090/S0002-9947-1975-0382120-3
- PDF | Request permission
Abstract:
Shafaat introduced two successive generalisations of the variety of algebras: namely the semivariety and the quasivariety. We study a slightly more generalised concept which we call a pseudovariety.References
- P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948
- J. A. Gerhard and Ahmad Shafaat, Semivarieties of idempotent semigroups, Proc. London Math. Soc. (3) 22 (1971), 667–680. MR 292967, DOI 10.1112/plms/s3-22.4.667
- J. R. Isbell, Subjects, adequacy, completeness and categories of algebras. [Subobjects, adequacy, completeness and categories of algebras], Rozprawy Mat. 36 (1964), 33. MR 163939
- Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR 0202787 B. H. Neumann, Groups properties with countable character (unpublished).
- Hanna Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967. MR 0215899, DOI 10.1007/978-3-642-88599-0
- Ahmad Shafaat, On implicationally defined classes of algebras, J. London Math. Soc. 44 (1969), 137–140. MR 237409, DOI 10.1112/jlms/s1-44.1.137
- Ahmad Shafaat, On the structure of certain idempotent semigroups, Trans. Amer. Math. Soc. 149 (1970), 371–378. MR 258995, DOI 10.1090/S0002-9947-1970-0258995-0
- Ahmad Shafaat, A note on quasiprimitive classes of algebras, J. London Math. Soc. (2) 2 (1970), 489–492. MR 276166, DOI 10.1112/jlms/2.Part_{3}.489
- Ahmad Shafaat, Subcartesian products of finitely many finite algebras, Proc. Amer. Math. Soc. 26 (1970), 401–404. MR 265261, DOI 10.1090/S0002-9939-1970-0265261-1 —, Remarks on quasivarieties of algebras (unpublished).
- Ahmad Shafaat, Lattices of subsemivarieties of certain varieties, J. Austral. Math. Soc. 12 (1971), 15–20. MR 0276158, DOI 10.1017/S1446788700008259
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 213 (1975), 53-60
- MSC: Primary 08A15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0382120-3
- MathSciNet review: 0382120