A decomposition for certain real semisimple Lie groups
HTML articles powered by AMS MathViewer
- by H. Lee Michelson
- Trans. Amer. Math. Soc. 213 (1975), 177-193
- DOI: https://doi.org/10.1090/S0002-9947-1975-0385002-6
- PDF | Request permission
Abstract:
For a class of real semisimple Lie groups, including those for which G and K have the same rank, Kostant introduced the decomposition $G = K{N_0}K$, where ${N_0}$ is a certain abelian subgroup of N, and conjectured that the Jacobian of the decomposition with respect to Haar measure, as well as the spherical functions, would be polynomial in the canonical coordinates of ${N_0}$. We compute here the Jacobian, which turns out to be polynomial precisely when the equality of ranks is satisfied. We also compute those spherical functions which restrict to polynomials on ${N_0}$.References
- Shôrô Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 1–34. MR 153782
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241–310. MR 94407, DOI 10.2307/2372786
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Sigurdur Helgason, A formula for the radial part of the Laplace-Beltrami operator, J. Differential Geometry 6 (1971/72), 411–419. MR 301460
- Sigurđur Helgason and Kenneth Johnson, The bounded spherical functions on symmetric spaces, Advances in Math. 3 (1969), 586–593. MR 249542, DOI 10.1016/0001-8708(69)90010-3
- F. I. Karpelevič, The geometry of geodesics and the eigenfunctions of the Beltrami-Laplace operator on symmetric spaces, Trans. Moscow Math. Soc. 1965 (1967), 51–199. Amer. Math. Soc., Providence, R.I., 1967. MR 0231321
- Bertram Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413–455 (1974). MR 364552, DOI 10.24033/asens.1254
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 213 (1975), 177-193
- MSC: Primary 22E30; Secondary 43A80
- DOI: https://doi.org/10.1090/S0002-9947-1975-0385002-6
- MathSciNet review: 0385002