Extension of Fourier $L^{p}—L^{q}$ multipliers
HTML articles powered by AMS MathViewer
- by Michael G. Cowling
- Trans. Amer. Math. Soc. 213 (1975), 1-33
- DOI: https://doi.org/10.1090/S0002-9947-1975-0390652-7
- PDF | Request permission
Abstract:
By $M_p^q(\Gamma )$ we denote the space of Fourier ${L^p} - {L^q}$ multipliers on the LCA group $\Gamma$. K. de Leeuw [4] (for $\Gamma = {R^a}$), N. Lohoué [16] and S. Saeki [19] have shown that if ${\Gamma _0}$ is a closed subgroup of $\Gamma$, and $\phi$ is a continuous function in $M_p^p(\Gamma )$, then the restriction ${\phi _0}$ of $\phi$ to ${\Gamma _0}$ is in $M_p^p({\Gamma _0})$, and ${\left \| {{\phi _0}} \right \|_{M_p^p}} \leqslant {\left \| \phi \right \|_{M_p^p}}$. We answer here a natural question arising from this result: we show that every continuous function $\psi$ in $M_p^p(\Gamma )$ is the restriction to ${\Gamma _0}$ of a continuous $M_p^p(\Gamma )$ function whose norm is the same as that of $\psi$. A Figà-Talamanca and G. I. Gaudry [8] proved this with the extra condition that ${\Gamma _0}$ be discrete: our technique develops their ideas. An extension theorem for $M_p^q({\Gamma _0})$ is obtained: this complements work of Gaudry [11] on restrictions of $M_p^q(\Gamma )$-functions to ${\Gamma _0}$.References
- P. R. Ahern and R. I. Jewett, Factorization of locally compact abelian groups, Illinois J. Math. 9 (1965), 230–235. MR 179288, DOI 10.1215/ijm/1256067883 M. G. Cowling, Spaces $A_p^q$ and ${L^p} - {L^q}$ Fourier multipliers, Doctoral Dissertation, The Flinders University of South Australia, Bedford Park, 1974. —, Distributions on locally compact groups (manuscript).
- Karel de Leeuw, On $L_{p}$ multipliers, Ann. of Math. (2) 81 (1965), 364–379. MR 174937, DOI 10.2307/1970621
- R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR 0221256
- Alessandro Figà-Talamanca, Translation invariant operators in $L^{p}$, Duke Math. J. 32 (1965), 495–501. MR 181869
- Alessandro Figà-Talamanca and G. I. Gaudry, Density and representation theorems for multipliers of type $(p,\,q)$, J. Austral. Math. Soc. 7 (1967), 1–6. MR 0209770, DOI 10.1017/S1446788700005012
- Alessandro Figà-Talamanca and Garth I. Gaudry, Extensions of multipliers, Boll. Un. Mat. Ital. (4) 3 (1970), 1003–1014 (English, with Italian summary). MR 0279533
- G. I. Gaudry, Quasimeasures and operators commuting with convolution, Pacific J. Math. 18 (1966), 461–476. MR 203502, DOI 10.2140/pjm.1966.18.461
- G. I. Gaudry, Multipliers of type $(p,\,q)$, Pacific J. Math. 18 (1966), 477–488. MR 203503, DOI 10.2140/pjm.1966.18.477
- Garth I. Gaudry, Restrictions of multipliers to closed subgroups, Math. Ann. 197 (1972), 171–179. MR 318785, DOI 10.1007/BF01428222
- Carl Herz, Remarques sur la note précédente de Varopoulos, C. R. Acad. Sci. Paris 260 (1965), 6001–6004 (French). MR 181870
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187
- J.-L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5–68 (French). MR 165343, DOI 10.1007/BF02684796 N. Lohoué, Algèbres ${A_p}$ et convoluteurs de ${L^p}$, Doctoral Dissertation, Université Paris-Sud, 1971.
- Hans Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968. MR 0306811
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Sadahiro Saeki, Translation invariant operators on groups, Tohoku Math. J. (2) 22 (1970), 409–419. MR 275057, DOI 10.2748/tmj/1178242767
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 213 (1975), 1-33
- MSC: Primary 43A22
- DOI: https://doi.org/10.1090/S0002-9947-1975-0390652-7
- MathSciNet review: 0390652