Functions which are restrictions of $L^{p}$-multipliers
HTML articles powered by AMS MathViewer
- by Michael G. Cowling
- Trans. Amer. Math. Soc. 213 (1975), 35-51
- DOI: https://doi.org/10.1090/S0002-9947-1975-0390653-9
- PDF | Request permission
Abstract:
Raouf Doss has given a sufficient condition for a measurable function $\phi$ on a measurable subset $\Lambda$ of an LCA group $\Gamma$ to be the restriction (l.a.e.) to $\Lambda$ of the Fourier transform of a bounded measure, i.e., a Fourier multiplier of type (1, 1). We generalise Doss’ theorem, and prove that, if the measurable function $\phi$ on $\Lambda$ is approximable on finite subsets of $\Lambda$ by trigonometric polynomials which are Fourier multipliers of type (p, p) on $\Gamma$ of norms no greater than C, then $\phi$ is equal locally almost everywhere to the restriction to $\Lambda$ of a Fourier multiplier of type (p, p) and norm no greater than C.References
- M. G. Cowling, Spaces $A_p^q$ and ${L^p} - {L^q}$ Fourier multipliers, Doctoral Dissertation, Flinders University of South Australia, Bedford Park, 1974.
- Karel de Leeuw and Carl Herz, An invariance property of spectral synthesis, Illinois J. Math. 9 (1965), 220–229. MR 179539
- Raouf Doss, Approximations and representations for Fourier transforms, Trans. Amer. Math. Soc. 153 (1971), 211–221. MR 268597, DOI 10.1090/S0002-9947-1971-0268597-9
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Alessandro Figà-Talamanca, Translation invariant operators in $L^{p}$, Duke Math. J. 32 (1965), 495–501. MR 181869
- Carl Herz, Remarques sur la note précédente de Varopoulos, C. R. Acad. Sci. Paris 260 (1965), 6001–6004 (French). MR 181870 C. Herz, Séminaire Orsay harmonique, juin 1970.
- Noël Lohoué, La synthèse des convoluteurs sur un groupe abélien localement compact, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A27–A29 (Russian). MR 275062
- Sadahiro Saeki, Translation invariant operators on groups, Tohoku Math. J. (2) 22 (1970), 409–419. MR 275057, DOI 10.2748/tmj/1178242767
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 213 (1975), 35-51
- MSC: Primary 43A22
- DOI: https://doi.org/10.1090/S0002-9947-1975-0390653-9
- MathSciNet review: 0390653