$Z$-sets in ANR’s
HTML articles powered by AMS MathViewer
- by David W. Henderson
- Trans. Amer. Math. Soc. 213 (1975), 205-216
- DOI: https://doi.org/10.1090/S0002-9947-1975-0391008-3
- PDF | Request permission
Abstract:
(1) Let A be a closed Z-set in an ANR X. Let $\mathcal {F}$ be an open cover of X. Then there is a homotopy inverse $f:X \to X - A$ to the inclusion $X - A \to X$ such that f and both homotopies are limited by $\mathcal {F}$. (2) If, in addition, X is a manifold modeled on a metrizable locally convex TVS, F, such that F is homeomorphic to ${F^\omega }$, then there is a homotopy $j:X \times I \to X$ limited by $\mathcal {F}$ such that the closure (in X) of $j(X \times \{ 1\} )$ is contained in $X - A$.References
- R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365–383. MR 214041, DOI 10.1307/mmj/1028999787
- R. D. Anderson, David W. Henderson, and James E. West, Negligible subsets of infinite-dimensional manifolds, Compositio Math. 21 (1969), 143–150. MR 246326
- Karol Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967. MR 0216473
- T. A. Chapman, Deficiency in infinite-dimensional manifolds, General Topology and Appl. 1 (1971), 263–272. MR 322898, DOI 10.1016/0016-660X(71)90097-3
- C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), 200–242. MR 20771, DOI 10.2307/2371848
- K. H. Dauker, Affine and euclidean complexes, Dokl. Akad. Nauk SSSR 128 (1959), 655–656 (Russian). MR 0117708
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- James Eells Jr. and Nicolaas H. Kuiper, Homotopy negligible subsets, Compositio Math. 21 (1969), 155–161. MR 253331
- R. Engelking, Outline of general topology, North-Holland Publishing Co., Amsterdam; PWN—Polish Scientific Publishers, Warsaw; Interscience Publishers Division John Wiley & Sons, Inc., New York, 1968. Translated from the Polish by K. Sieklucki. MR 0230273
- A. M. Gleason, Spaces with a compact Lie group of transformations, Proc. Amer. Math. Soc. 1 (1950), 35–43. MR 33830, DOI 10.1090/S0002-9939-1950-0033830-7
- Richard E. Heisey, Manifolds modelled on $R^{\infty }$ or bounded weak-* topologies, Trans. Amer. Math. Soc. 206 (1975), 295–312. MR 397768, DOI 10.1090/S0002-9947-1975-0397768-X
- David W. Henderson, Corrections and extensions of two papers about infinite-dimensional manifolds, General Topology and Appl. 1 (1971), 321–327. MR 293677, DOI 10.1016/0016-660X(71)90004-3
- David W. Henderson, Stable classification of infinite-dimensional manifolds by homotopy-type, Invent. Math. 12 (1971), 48–56. MR 290413, DOI 10.1007/BF01389826
- David W. Henderson, Micro-bundles with infinite-dimensional fibers are trivial, Invent. Math. 11 (1970), 293–303. MR 282380, DOI 10.1007/BF01403183
- J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578, DOI 10.1007/978-3-662-41914-4 W. K. Mason, Deficiency in spaces of homeomorphisms (to appear).
- R. Schori, Topological stability for infinite-dimensional manifolds, Compositio Math. 23 (1971), 87–100. MR 287586 H. Torunczyk, (G, K)-skeleton and absorbing sets in complete metric spaces, Fund. Math. (to appear).
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 213 (1975), 205-216
- MSC: Primary 54C55; Secondary 57A20
- DOI: https://doi.org/10.1090/S0002-9947-1975-0391008-3
- MathSciNet review: 0391008